Advertisement

Genes and Polypeptides of Photosystem II

  • John C. Gray
  • Sean M. Hird
  • Richard Wales
  • Andrew N. Webber
  • David L. Willey
Part of the NATO ASI Series book series (NSSA, volume 168)

Abstract

Photosystem II catalyses the light-driven transfer of electrons from water to plastoquinone, producing oxygen and generating a proton gradient across the thylakoid membrane. The complex may be regarded as made up of three assemblies of polypeptides: a light-harvesting complex (LHCH), a core complex containing the reaction centre and two antenna chlorophyll proteins, and an extrinsic complex concerned with oxygen evolution. Photosystem II is structually the most complex of the supramolecular assemblies of the thylakoid membrane and is currently recognised to be composed of at least 20 different polypeptides.1

Keywords

Thylakoid Membrane Chloroplast Gene Thylakoid Lumen Stromal Side Mature Polypeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J C Gray, Genetics and synthesis of chloroplast membrane proteins, in: “Photosynthesis”, J Amesz, ed., Elsevier, Amsterdam, pp319–342 (1987).CrossRefGoogle Scholar
  2. 2.
    M Sugiura, Structure and function of the tobacco chloroplast genome, Bot Mag (Tokyo) 100: 407–436 (1987).CrossRefGoogle Scholar
  3. 3.
    G R M Courtice, C M Bowman, T A Dyer, and J C Gray, Location of genes for components of photosystem II in pea and wheat chloroplast DNA, Curr Genet 10: 329–333 (1985).CrossRefGoogle Scholar
  4. 4.
    J Morris and R G Herrmann, Nucleotide sequence of the gene for the P680 chlorophyll a apoprotein of the photosystem II reaction center from spinach, Nucleic Acids Res 12: 2837–2850 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    K Holschuh, W Bottomley, and P R Whitfeld, Structure of the spinach chloroplast genes for the D2 and 44-kd reaction centre polypeptides of photosystem II and for tRNAser(UGA), Afadeic Acids Res 12:8819–8834 (1984).CrossRefGoogle Scholar
  6. 6.
    J Alt, J Morris, P Westhoff, and R G Herrmann, Nucleotide sequence of the clustered genes for the 44kd chlorophyll a apoprotein and the “32kd”-like protein of the photosystem II reaction center in the spinach plastid chromosome, Curr Genet 8: 597–606 (1984).CrossRefGoogle Scholar
  7. 7.
    J C Gray, P P J Dunn, C J Eccles, S M Hird, A S Hoglund, D I Last, B J Newman, and D L Willey, Biogenesis of thylakoid membrane proteins, in: “Plant Membranes: Structure, Function, Biogenesis”, C J Leaver and H Sze, eds, Alan R Liss, New York, pp 163–179 (1987).Google Scholar
  8. 8.
    H Michel, D F Hunt, J Shabanowitz, and J Bennett, Tandem mass spectrometry reveals three photosystem II proteins of spinach chloroplasts contain N-acetyl O-phosphothreonine at their NH2 termini, J Biol Chem 263: 1123–1130 (1988).PubMedGoogle Scholar
  9. 9.
    S S Golden and G W Stearns, Nucleotide sequence and transcript analysis of three photosystem II genes from the cyanobacterium Synechococcus sp PCC 7942, Gene 67: 85–96 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    J Deisenhofer, O Epp, K Miki, R Huber, and H Michel, Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudononas viridis at 3Å resolution, Nature 318: 618–624 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    B Marder, P Goloubinoff, and M Edelman, Molecular architecture of the rapidly metabolised 32-kilodalton protein of photosystem II. Indications for COOH-terminal processing of a chloroplast membrane polypeptide, J Biol Chem 259: 3900–3908 (1984).PubMedGoogle Scholar
  12. 12.
    J Barber, Photosynthetic reaction centres: a common link, Trends Biochem Sci 12: 321–326 (1987).CrossRefGoogle Scholar
  13. 13.
    A Trebst, The three-dimentional structure of the herbicide binding niche on the reaction center polypeptides of photosystem II, Z Naturforsch 42c: 742–750 (1987).Google Scholar
  14. 14.
    K E Steinback, L Mcintosh, L Bogorad, and C J Arntzen, Identification of the triazine receptor protein as a chloroplast gene product, Proc Natl Acad Sci USA 78:7463–7467 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    K Pfister, K E Steinback, G Gardner, and C J Arntzen, Photoaffinity labelling of a herbicide receptor protein in chloroplast membranes, Proc Natl Acad Sci USA 78:981–985 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    J Hirchberg and L Mcintosh, Molecular basis of herbicide resistance in Amaranthus hybridus, Science 222: 1346–1349(1983).Google Scholar
  17. 17.
    P Goloubinoff, M Edelman, and R B Hallick, Chloroplast-coded atrazine-resistance in Solanum nigrum: psb A loci from susceptible and resistant biotypes are isogenic except for a single codon change, Nucleic Acids Res 12: 9489–9496 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    J Hirchberg, A Bleecker, D L Kyle, L Mcintosh, and C J Arntzen, The molecular basis of triazine-herbicide resistance in higher plant chloroplasts, Z Naturforsch 39C: 412–4420 (1984).Google Scholar
  19. 19.
    P Bettini, S McNally, M Sevignac, H Darmency, J Gasquez, and M Dron, Atrazine resistance in Chenopodium album. Low and high levels of resistance to the herbicide are related to the same chloroplast psb A gene mutation, Plant Physiol 84: 1442–1446 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    E R Blyden and J C Gray, The molecular basis of triazine herbicide resistance in Senecio vulgaris L., Biochem Soc Trans 14: 62 (1986).Google Scholar
  21. 21.
    B A Barry and G T Babcock, Tyrosine radicals are involved in the photosynthetic oxygen-evolving system, Proc Natl Acad Sci USA 84: 7099–7103 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    R J Debus, B A Barry, G T Babcock, and L Mcintosh, Site-directed mutgenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system, Proc Natl Acad Sci USA 85:427–430 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    R G Herrmann, J Alt, B Schiller, W R Widger, and W A Cramer, Nucleotide sequence of the gene for apocytochrome b-559 on the spinach plastid chromosome: implications for the structure of the membrane protein, FEBS Lett 176: 239–244 (1984).CrossRefGoogle Scholar
  24. 24.
    D L Willey and J C Gray, Two small open readings are co-transcribed with the pea chloroplast genes for the polypeptides of cytochrome b-559, Mol Gen Genet, submitted.Google Scholar
  25. 25.
    A N Webber, S M Hird, L Packman, T A Dyer, and J C Gray, A photosystem II polypeptide is encoded by an open reading frame co-transcribed with genes for cytochrome b-559 in wheat chloroplast DNA, Plant Mol Biol, in press.Google Scholar
  26. 26.
    G T Babcock, W R Widger, W A Cramer, W A Oertling, and J G Metz, Axial ligands of chloroplast cytochrome b-559: identification and requirement for a heme-cross-linked polypeptide structure, Biochemistry 24: 3638–3645 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    K Gounaris, U Pick, and J Barber, Stoichiometry and turnover of photosystem II polypeptides, FEBS Lett 211: 94–98 (1987).CrossRefGoogle Scholar
  28. 28.
    H Zuber, R Brunisholz, and W Sidler, Structure and function of light-harvesting pigment-protein complexes, in: “Photosynthesis”, J Amesz, ed, Elsevier, Amsterdam, pp 232–271 (1987).Google Scholar
  29. 29.
    J Farchaus and R L Dilley, Purification and partial sequence of the Mr 10,000 phosphoprotein from spinach thylakoids, Arch Biochem Biophys 244: 94–101 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    S M Hird, T A Dyer, and J C Gray, The gene for the lOkDa phosphoprotein of photosystem II is located in chloroplast DNA, FEBS Lett 209, 181–186 (1986).CrossRefGoogle Scholar
  31. 31.
    P Westhoff, J Farchaus, and R G Herrmann, The gene for the Mr 10,000 phosphoprotein associated with photosystem II is part of the psb B operon of the spinach plastid chromosome, Curr Genet 11: 165–169 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    K Kato, R T Sayre, and L Bogorad, Expression of the PSB-I gene in maize chloroplasts, Proc Ann Meeting Jap Soc Plant Physiol, Urawa p208 (1987).Google Scholar
  33. 33.
    K Ohyama, H Fukuzawa, T Kohchi, H Shirai, T Sano, S Sano, K Umesono, Y Shiki, M Takeuchi, Z Chang, S Aota, H Inokuchi, and H Ozeki, Chloroplast gene organisation deduced from complete sequence of liverwort Marchantía polymorpha chloroplast DNA, Nature 322:572–574 (1986).CrossRefGoogle Scholar
  34. 34.
    N Murata, M Miyao, N Hayashida, T Hidaka, and M Sugiura, Identification of a new gene in the chloroplast genome encoding a low-molecular-mass polypeptide of photosystem II complex, FEBS Lett 235: 283–288 (1988).CrossRefGoogle Scholar
  35. 35.
    K Ohyama, T Kohchi, T Sano, and Y Yamada, Newly identified groups of genes in chloroplasts, Trends Biochem Sci. 13:19–22 (1988).PubMedCrossRefGoogle Scholar
  36. 36.
    A A Steinmetz, M Castroviejo, R T Sayre, and L Bogorad, Protein PSII-G. An additional component of photosystem II identified through its plastid gene in maize, J Biol Chem 261: 2485–2488 (1986).PubMedGoogle Scholar
  37. 37.
    N Murata and M Miyao, Extrinsic membrane proteins in the photosynthetic oxygen-evolving complex, Trends Biochem Sci 10: 122–124 (1985).CrossRefGoogle Scholar
  38. 38.
    B Anderson, C Larsson, C Jansson, U Ljungberg, and H E Akerlund, Immunological studies on the organisation of proteins in photosynthetic oxygen evolution, Biochem Biophys Acta 766: 21–28 (1984).CrossRefGoogle Scholar
  39. 39.
    A Tyagi, J Hermans, H Steppuhn, C Jansson, F Vater, and R G Herrmann, Nucleotide sequence of cDNA clones encoding the complex “33kDa” precursor protein associated with the photosynthetic oxygen-evolving complex from spinach, Mol Gen Genet 207:288–293 (1987).CrossRefGoogle Scholar
  40. 40.
    R Wales, B J Newman, D Pappin, and J C Gray, The extrinsic 33kDa polypeptide of the oxygen-evolving complex of photosystem II is encoded by a multi-gene family in pea, Plant Mol Biol, submittedGoogle Scholar
  41. 41.
    S Smeekens, S de Groot, J van Binsbergen, and P Weisbeek, Sequence of the precursor of the chloroplast thylakoid lumen protein plastocyanin, Nature 317:456–458 (1985).CrossRefGoogle Scholar
  42. 42.
    S Smeekens, C Bauerle, J Hageman, K Keegstra, and P Weisbeek, The role of the transit peptide in the routing of precursors towards different chloroplast compartments, Cell 46: 365–375 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    H Oh-Oka, S Tanaka, K Wada, T Kuwabara, and N Murata, Complete amino acid sequence of the 33kDa protein isolated from spinach photosystem II particles, FEBS Lett 197: 63–66 (1986).CrossRefGoogle Scholar
  44. 44.
    F P Wolter, J M Schmitt, H J Bohnert, and A Tsugita, Simultaneous isolation of three peripheral proteins — a 32KDa protein, ferredoxin-NADP+ reductase and coupling factor — from spinach thylakoids and partial characterisation of a 32kDa protein, Plant Sci Lett 34: 322–334 (1984).Google Scholar
  45. 45.
    Y Yamamoto, M A Hermodson, and D W Krogmann, Improved purification and N-terminal sequence of the 33-kDa protein in spinach PSII, FEBS Lett 195:155–158 (1986).CrossRefGoogle Scholar
  46. 46.
    A Watanabe, E Minami, M Murase, K Shinohara, T Kuwabara, and N Murata, Biogenesis of photosystem II complex in spinach chloroplasts, in: “Progress in Photosynthesis Research”, J Biggins, ed., Martinus-Nijhoff, The Hague, Vol 4, pp 629–636 (1987).Google Scholar
  47. 47.
    J Tittgen, J Hermans, J Steppuhn, T Jansen, C Jansson, B Andersson, R Nechushtai, N Nelson, and R G Herrmann, Isolation of cDNA clones for fourteen nuclear-encoded thylakoid membrane proteins, Mol Gen Genet 204: 259–265 (1986).CrossRefGoogle Scholar
  48. 48.
    W C S tailings, K A Pattridge, R K Strong and M L Ludwig, Manganese and iron superoxide dismutases are structural homologs, J Biol Chem 259: 10695–10699 (1984).Google Scholar
  49. 49.
    R M Tufty and R H Kretsinger, Troponin and parvalbumin calcium-binding regions predicted in myosin light-chain and T4 lysozyme, Science 187: 167–169 (1975).PubMedCrossRefGoogle Scholar
  50. 50.
    T Jansen, C Rother, J Steppuhn, H Reinke, K Beyreuther, C Jansson, B Andersson, and R G Herrmann, Nucleotide sequence of cDNA clones encoding the complete ‘23kDa’ and ‘16kDa’ precursor proteins associated with the photosynthetic oxygen-evolving complex from spinach, FEBS Lett 216: 234–240 (1987).CrossRefGoogle Scholar
  51. 51.
    U Ljungberg, H E Akerlund, C Larsson, and B Andersson, Identification of polypeptides associated with the 23 and 33kDa proteins of photosynthetic oxygen evolution, Biochem Biophys Acta 767: 145–152 (1984).CrossRefGoogle Scholar
  52. 52.
    U Ljungberg, H E Akerland, and B Andersson, Isolation and characterisation of trip lOkDa and 22kDa polypeptides of higher plant photosystem 2. Eur J Biochem 158: 477–482 (1986).PubMedCrossRefGoogle Scholar
  53. 53.
    P Eckes, S Rosahl, J Schell, and L Willmitzer, Isolation and characterisation of a light-inducible, organ-specific gene from potato and analysis of its expression after tagging and transfer into tobacco and potato shoots, Mol Gen Genet 205: 14–22 (1986).CrossRefGoogle Scholar
  54. 54.
    A N Webber, L C Packman, and J C Gray, A lOkDa polypeptide associated with the oxygen-evolving complex of photosystem II has a putative C-terminal non-cleavable thylakoid transfer domain, FEBS Lett, submitted.Google Scholar
  55. 55.
    U Ljungberg, T Henrysson, C P Rochester, H E Akerlund, and B Andersson, The presence of low molecular-weight polypeptides in spinach photosystem II core preparations. Isolation of a 5kDa hydrophilic polypeptide, Biochem Biophys Acta 849: 112–120(1986).Google Scholar
  56. 56.
    S D Kung, J P Thornber and S G Wildman, Nuclear DNA codes for the photosystem II chlorophyll-protein of chloroplast membranes, FEBS Lett 24:185–188 (1972).PubMedCrossRefGoogle Scholar
  57. 57.
    M M Stayton, M Black, J Bedbrook, and P Dunsmuir, A novel chlorophyll a/b-binding (cab) protein gene from petunia which encodes the lower molecular weight cab precursor protein, Nucleic Acids Res 14: 9781–9796 (1987).CrossRefGoogle Scholar
  58. 58.
    P Dunsmuir, S M Smith, and J Bedbrook, The major chlorophyll a/b binding protein of petunia is composed of several polypeptides encoded by a number of disctint nuclear genes, J Mol Appl Genet 2: 285–300 (1983).PubMedGoogle Scholar
  59. 59.
    E Pichersky, R Bernatzky, S D Tanksley, R B Briedenback, A P Kausch, and A R Cashmore, Molecular characterization and genetic mapping of two clusters of genes encoding chlorophyll a/b-binding proteins in Lycopersicon esculentum (tomato), Gene 40: 247–258 (1985).PubMedCrossRefGoogle Scholar
  60. 60.
    G A Karlin-Neumann, B D Kohorn, J P Thornber, and E M Tobin, A chlorophyll a/b-binding protein encoded by a gene containing an intron with characteristics of a transposable element, J Mol Appl Genet 3: 45–61 (1985).PubMedGoogle Scholar
  61. 61.
    G Coruzzi, R Broglie, A Cashmore, and N H Chua, Nucleotide sequences of two pea cDNA clones encoding the small subunit of ribulose 1,5-bisphosphate carboxylase and the major chlorophyll a/b-binding thylakoid polypeptide, J Biol Chem 258: 1399–1402 (1983).PubMedGoogle Scholar
  62. 62.
    L S Leutwiler, E M Meyerowitz and E M Tobin, Structure and expression of three light-harvesting chlorophyll ö/&-binding protein genes in Arabidopsis thaliana, Nucleic Acids Res 14: 4051–4076 (1986).CrossRefGoogle Scholar
  63. 63.
    J E Mullett, The amino acid sequence of the polypeptide segment which regulates membrane adhesion (grana stacking) in chloroplasts, J Biol Chem 258: 9941–9948 (1983).Google Scholar
  64. 64.
    R Burgi, F Suter and H Zuber, Arrangement of the light-harvesting chlorophyll a/b protein complex in the thylakoid membrane, Biochim Biophys Acta 890:346–351 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • John C. Gray
    • 1
  • Sean M. Hird
    • 1
  • Richard Wales
    • 1
  • Andrew N. Webber
    • 1
  • David L. Willey
    • 1
  1. 1.Botany SchoolUniversity of CambridgeCambridgeUK

Personalised recommendations