Structural Organization and Function of Polypeptide Subunits in Photosystem I

  • Barry D. Bruce
  • Richard Malkin
  • R. Max Wynn
  • April Zilber
Part of the NATO ASI Series book series (NSSA, volume 168)


Photosystem I (PSI) is one of three multi-subunit complexes found in thylakoids of higher plants, algae and cyanobacteria.1 In conjunction with PSII and the cytochrome b 6 -f complex, electrons are transferred from H2O to NADP and accompanying this process, protons are translocated across the thylakoid membrane. This non-cyclic electron transfer system yields NADPH, O2 and a proton gradient, of which the latter is used for the synthesis of ATP. In the overall reaction from water to NADP, PSI catalyzes a light-dependent transfer of electrons between two mobile proteins, plastocyanin and ferredoxin.2,3 The PSI complex differs from PSII and most other photochemical reaction center complexes found in non-O2 evolving organisms in that PSI utilizes a bound electron complex which includes low-potential iron-sulfur centers.


Antenna Complex Molecular Weight Subunit Polypeptide Subunit Subunit Stoichiometry Reaction Center Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Nelson, Structure and function of protein complexes in the photosynthetic membrane, in: “Photosynthesis,” J. Amesz, ed., Elsevier Science Publishers, Amsterdam (1987).Google Scholar
  2. 2.
    R. Malkin, Photosystem I, in: “The Light Reactions,” J. Barber, ed., Elsevier Science Publishers, Amsterdam (1987).Google Scholar
  3. 3.
    A. W. Rutherford, and P. Heathcote, Primary photochemistry in photosystem I., Photosyn. Res. 6:295 (1985).CrossRefGoogle Scholar
  4. 4.
    P. Mathis, and A. W. Rutherford, The primary reactions of photosystems I and II of algae and higher plants, in: “Photosynthesis,” J. Amesz, ed., Elsevier Science Publishers, Amsterdam (1987).Google Scholar
  5. 5.
    B. Kok, Absorption changes induced by the photochemical reaction of photosynthesis, Nature 179:583 (1957).CrossRefGoogle Scholar
  6. 6.
    J. E. Mullet, J. J. Burke, and C. J. Arntzen, Chlorophyll proteins of photosystem I, Plant Physiol. 65:814 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    D. J. Lundell, A. N. Glazer, A. Melis and R. Malkin, Characterization of a cyanobacterial PSI complex, J. Biol. Chem. 260:646 (1985).PubMedGoogle Scholar
  8. 8.
    C. Bengis, and N. Nelson, Purification and properties of the photosystem I reaction center from chloroplasts, J. Biol. Chem. 250:2783 (1975).PubMedGoogle Scholar
  9. 9.
    E. Lam, W. Ortiz, S. Mayfield, and R. Malkin, Isolation and characterization of a light-harvesting chlorophyll a/b protein complex associated with photosystem I, Plant Physiol. 74:650 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    P. Haworth, J. L. Watson, and C. J. Arntzen, The detection, isolation and characterization of a light-harvesting complex which is specifically associated with photosystem I, Biochim. Biophys. Acta 724:151 (1983).CrossRefGoogle Scholar
  11. 11.
    W. Ortiz, E. Lam, M. Ghirardi, and R. Malkin, Antenna function of a chlorophyll a/b protein complex of photosystem I, Biochim. Biophys. Acta 766, 505–509.Google Scholar
  12. 12.
    E. Vierling, and R. S. Alberte, P700 chlorophyll a protein. Purification, characterization and antibody production, Plant Physiol. 72:625 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    L. E. Fish, and L. Bogorad, Identification and analysis of the maize P700 chlorophyll a apoproteins PSI-A1 and PSI-A2 by high pressure liquid chromatography analysis and partial sequence determination, J. Biol. Chem. 261:8134 (1986).PubMedGoogle Scholar
  14. 14.
    B. D. Bruce, and R. Malkin, Subunit stoichiometry of the chloroplast photosystem I complex, J. Biol. Chem. 263:7302 (1988).PubMedGoogle Scholar
  15. 15.
    E. Lam, W. Ortiz, and R. Malkin, Chlorophyll a/b proteins of photosystem I, FEBS Lett. 168:10 (1984).CrossRefGoogle Scholar
  16. 16.
    R. Bassi, and D. Simpson, Chlorophyll protein complexes of barley photosystem I, Eur. J. Biochem. 163:221 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    J. M. Anderson, A chlorophyll a/b-protein complex of photosystem I, Photosyn. Res. 8:221 (1984).Google Scholar
  18. 18.
    R. Nechustai, C. C. Peterson, G. F. Peter, and J.-P. Thornber, Purification and characterization of a light-harvesting chlorophyll a/b-protein of photosystem I of Lemna gibba , Eur. J . Biochem. 164:345 (1987).CrossRefGoogle Scholar
  19. 19.
    P. K. Evans, and J. M. Anderson, The chlorophyll a/b-proteins of PSI and PSII are immunologically related, FEBS Lett. 199:227 (1986).CrossRefGoogle Scholar
  20. 20.
    M. J. White, B. R. Green, Antibodies to the photosystem I and chlorophyll a + b antenna cross-react with polypeptides of CP29 and LHCII, Eur. J. Biochem. 163:545 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    P. Mathis, K. Sauer, and R. Remy, Rapidly reversible flash-induced electron transfer in a P700 chlorophyll-protein complex isolated with SDS, FEBS Lett. 88:275 (1978).CrossRefGoogle Scholar
  22. 22.
    J. H. Golbeck, K. G. Parrett, T. Mehari, K. L. Jones, and J. J. Brand, Isolation of the intact photosystem I reaction center core containing P700 and iron-sulfur center FX, FEBS Lett. 228:268 (1988).CrossRefGoogle Scholar
  23. 23.
    K. Ohyama, H. Fukuzawa, T. Kohchi, H. Shirai, T. Sano, S. Sano, K. Umesono, Y. Shiki, M. Takeuchi, Z. Chang, S. Aota, H. Inokuchi, and H. Ozeki, Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA, Nature 322:572 (1986).CrossRefGoogle Scholar
  24. 24.
    K. Shinozaki, M. Ohme, M. Tanaka, T. Wakasugi, N. Hayashida, T. Matsubayashi, N. Zaita, J. Chun-Wonyse, J. Obokata, K. Yamaguchi-Shinozaki, C. Ohto, K. Torazawa, B. Y. Meng, M. Sugita, H. Deno, T. Kamogashira, K. Yamada, J. Kusuda, F. Takaiwa, A. Kato, N. Tohdoh, H. Shimada, and M. Suguira, The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression, EMBO J. 5:2043 (1986).PubMedGoogle Scholar
  25. 25.
    P. B. Hoj, I. Svendsen, H. V. Scheller, and B. L. Moller, Identification of a chloroplast-encoded 9-kDa polypeptide as a 2[4Fe-4S] protein carrying centers A and B of photosystem I, J. Biol. Chem. 262:12676 (1987).PubMedGoogle Scholar
  26. 26.
    H. Oh-oka, Y. Takahashi, K. Wada, H. Matsubara, K. Ohyama, and H. Ozeki, The 8 kDa polypeptide in photosystem I is a probable candidate of an iron-sulfur protein coded by the chloroplast gene frxA, FEBS Lett. 218:52 (1987).CrossRefGoogle Scholar
  27. 27.
    R. Malkin, P. J. Aparacio, and D. I. Arnon, The isolation and characterization of a new iron-sulfur protein from photosynthetic membranes, Proc. Natl. Acad. Sci. USA 71, 2362 (1974).PubMedCrossRefGoogle Scholar
  28. 28.
    R. M. Wynn, and R. Malkin, Characterization of an isolated chloroplast membrane Fe-S protein and its identification as the photosystem I Fe-SA/Fe-SB binding protein, FEBS Lett. 229:293 (1988).CrossRefGoogle Scholar
  29. 29.
    W. H. Orme-Johnson, and H. Beinert, Heterogeneity of paramagnetic species in two iron-sulfur proteins: Clostridium pasteuranium ferredoxin and milk xanthine oxidase, Biochem. Biophys. Res. Commun. 36:337 (1969).PubMedCrossRefGoogle Scholar
  30. 30.
    D. J. Davis, and K. Hough, Preparation of a covalently linked adduct between plastocyanin and cytochrome f, Biochem. Biophys. Res. Commun. 116:1000 (1983).CrossRefGoogle Scholar
  31. 31.
    L. M. Geren, J. Stonehuerner, D. J. Davis, and F. Millett, The use of a water-soluble carbodiimide to cross-link cytochrome c to plastocyanin, Biochim. Biophys. Acta 724:62 (1983).PubMedCrossRefGoogle Scholar
  32. 32.
    B. J. Vieira, K. K. Colvert, and D. J. Davis, Chemical cross-linking as probes of regions on ferredoxin involved in its interaction with ferredoxin:NADP reductase, Biochim. Biophys. Acta 851:109 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    G. Zanetti, A. Oliverti, and B. Curti, A cross-linked complex between ferredoxin and ferredoxin-NADP+ reductase, J. Biol. Chem. 259:6153 (1984).PubMedGoogle Scholar
  34. 34.
    N. E. Hoffman, E. Pichersky, V. S. Malik, K. Ko, and A. R. Cashmore, Isolation and sequence of a tomato cDNA clone encoding subunit II of the photosystem I reaction center, Plant Mol. Biol. 10:435 (1988).CrossRefGoogle Scholar
  35. 35.
    J. H. Golbeck, K. G. Parrett, and A. E. McDermott, Photosystem I charge separation in the absence of center A and B. III. Biochemical characterization of a reaction center particle containing P700 and FX, Biochim. Biophys. Acta 893:149 (1987).CrossRefGoogle Scholar
  36. 36.
    J. H. Golbeck, A. E. McDermott, and W. K. Jones, and D. M. Kurtz, Evidence for the existence of [2Fe-2S] as well as [4Fe-4S] clusters among Fa, FB and FX. Implications for the structure of the photosystem I reaction center, Biochim. Biophys. Acta 891:94 (1987).CrossRefGoogle Scholar
  37. 37.
    J. Deisenhofer, O. Epp, K. Miki, R. Huber, and H. Michel, Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis, Nature 318, 618 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    H. Michel, and J. Deisenhofer, Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II, Biochemistry 27:1 (1988).CrossRefGoogle Scholar
  39. 39.
    R. Malkin, On the function of two vitamin K1 molecules in the PSI electron acceptor complex. FEBS Lett. 208:343 (1986).CrossRefGoogle Scholar
  40. 40.
    K. Ziegler, W. Lockau, and W. Nitschke, Bound electron acceptors of photosystem I. Evidence against the identity of redox center Ai with phylloquinone. FEBS Lett. 217:16 (1987).CrossRefGoogle Scholar
  41. 41.
    P. Setif, I. Ikegami, and J. Biggins, Light-induced charge separation in photosystem I at low temperature is not influenced by vitamin K1, Biochim. Biophys. Acta 894:146 (1987).PubMedCrossRefGoogle Scholar
  42. 42.
    G. P. Palace, J. E. Franke, and J. T. Warden, Is phylloquinone an obligate electron carrier in photosystem I?, FEBS Lett. 215:58 (1987).PubMedCrossRefGoogle Scholar
  43. 43.
    R. Nechustai, G. Schuster, N. Nelson, and I. Ohad, Photosystem I reaction centers from maize bundle sheath and mesophyll chloroplasts lack subunit III, Eur. J. Biochem. 159:157 (1986).CrossRefGoogle Scholar
  44. 44.
    W. Haehnel, V. Hesse, and A. Propper, Electron transfer from plastocyanin to P700. Function of a subunit of photosystem I reaction center, FEBS Lett. 111:79 (1980).CrossRefGoogle Scholar
  45. 45.
    R. Ratajczak, R. Mitchell, and W. Haehnel, Properties of the oxidizing site of photosystem I. Biochim. Biophys. Acta 933:306 (1988).CrossRefGoogle Scholar
  46. 46.
    B. D. Bruce, and R. Malkin. Structure-function studies of the higher plant photosystem I complex, in: “Plant Membranes. Structure, Function, Biogenesis,” C. Leaver and H. Sze, eds., Alan R. Liss, Inc., New York (1987).Google Scholar
  47. 47.
    Y. Shahak, H. B. Posner, and M. Avron, Evidence for a block between plastoquinone and cytochrome f in a photosynthetic mutant of Lemna with abnormal flowering behavior, Plant Physiol. 57:577 (1976).PubMedCrossRefGoogle Scholar
  48. 48.
    E. Lam, and R. Malkin, Characterization of a photosynthetic mutant of Lemna lacking the cytochrome b 6-f complex. Biochim. Biophys. Acta 810:106 (1985).PubMedCrossRefGoogle Scholar
  49. 49.
    R. C. Ford, D. Picot, and G. M. Garavito, Crystallization of the photosystem I reaction centre, EMBO J. 6:1581 (1987).PubMedGoogle Scholar
  50. 50.
    I. Witt, H. T. Witt, S. Gerken, W. Saenger, J. P. Dekker, and M. Rogner, Crystallization of reaction center I of photosynthesis, FEBS Lett. 221:260 (1987).CrossRefGoogle Scholar
  51. 51.
    A. Cantrell, and D. A. Bryant, Molecular cloning and nucleotide sequence of the psaA and psaB genes of the cyanobacterium Synechococcus sp. PCC 7002. Plant Mol. Biol. 9:453 (1987).CrossRefGoogle Scholar
  52. 52.
    E. Rhiel, and D. A. Bryant, Preliminary results concerning the psaC, psaD, psaE and psaF genes and their products in the cyanobacteria Synechococcus sp. PCC 7002 and Nostoc sp. PCC 8009, in: “Light-Energy Transduction in Photosynthesis: Higher Plants and Bacterial Models,” D. A. Bryant, and S. E. Stevens Jr., eds., Waverly Press, (Baltimore), in press.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Barry D. Bruce
    • 1
  • Richard Malkin
    • 1
  • R. Max Wynn
    • 1
  • April Zilber
    • 1
  1. 1.Division of Molecular Plant BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations