The Photosynthetic Assimilation of Nitrate and Its Interactions with CO2 Fixation

  • Catalina Lara
  • Miguel G. Guerrero
Part of the NATO ASI Series book series (NSSA, volume 168)


Photosynthesis is usually identified with the light--driven formation of carbohydrates and oxygen from CO2 and water. This formulation ignores, however, the basic fact that in the photosynthetic process not only CO2, but also the oxidized forms of other primordial bioelements are reduced and incorporated into cell material. Actually, photosynthesis drives a number of biosynthetic pathways involved in the assimilation of inorganic carbon, nitrogen and sulfur. At the expense of sunlight energy, unstable energy-rich products -cell material and oxygen- are synthesized from fully oxidized substrates with no useful chemical potential, namely water, carbon dioxide, nitrate, sulfate and phosphate (Losada and Guerrero, 1979; Losada et al., 1987).


Nitrate Reductase Glutamine Synthetase Nitrate Uptake Nitrite Reductase Nitrate Assimilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



D, L-glyceraldehyde


glutamate synthase”


glutamine synthetase


L-methionine, D, L, sulfoximine


nitrite reductase


“nitrate reductase.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANDERSON, J.W. (1981). Light-energy-dependent processes other than CO2 assimilation. In: “The Biochemistry of Plants”, vol. 8 (M.D. Hatch and N.K. Boardman, eds.), pp. 473–500. Academic Press, New York.Google Scholar
  2. ANDERSON, J.W. and DONE, J. (1977). Polarographic study of ammonia assimilation by isolated chloroplasts. Plant Physiol. 60:504–508.PubMedCrossRefGoogle Scholar
  3. ANDERSON, J.W. and DONE, J. (1978). Light-dependent assimilation of nitrite by isolated pea chloroplasts. Plant Physiol. 61:692–697.PubMedCrossRefGoogle Scholar
  4. ANDERSON, J.W. and WALKER, D.A. (1983). Ammonia assimilation and oxygen evolution by a reconstituted chloroplast system in the presence of 2-oxoglutarate and glutamate. Planta 159:247–253.CrossRefGoogle Scholar
  5. APARICIO, P.J., KNAFF, D.B. and MALKIN, R. (1975). The role of an iron-sulfur center and siroheme in spinach nitrite reductase. Arch. Biochem. Biophys. 169:102–107.PubMedCrossRefGoogle Scholar
  6. BASSHAM, J.A., LARSEN, P.O., LAWYER, A.L. and CORNWELL, K.L. (1981). Relationship between nitrogen metabolism and photosynthesis. In: Nitrogen and Carbon Metabolism (J.D. Bewley, ed.). Nijhoff/Junk, The Hague, pp. 135–163.CrossRefGoogle Scholar
  7. BEUDEKER, R. and TABITA, F.R. (1985). Characterization of glutamine synthetase isoforms from Chlorella. Plant Physiol. 77:791–794.PubMedCrossRefGoogle Scholar
  8. BONGERS, L.H.J. (1958). Kinetic aspects of nitrate reductase. Neth. J. Agric. Sci. 6:70–88.Google Scholar
  9. CAMMACK, R., HUCKLESBY, D.P. and HEWITT, E.J. (1978). Electron paramagnetic-resonance of the mechanism of leaf nitrite reductase: signals from the iron-sulphur centre and haem under turnover conditions. Biochem. J. 171:519–526.PubMedGoogle Scholar
  10. CAMMACK, R., FRY, I.V. and PAYNE, M.J. (1987). The significance of iron-nitrosyl complexes in biology and in the reaction of assimilatory nitrite reductase. In: Inorganic Nitrogen Metabolism (W.R. Ullrich, P.J. Aparicio, P.J. Syrett and F. Castillo, eds.). Springer-Verlag, Berlin, pp. 192–194.CrossRefGoogle Scholar
  11. CANDAU, P., MANZANO, C and LOSADA, M. (1976). Bioconversion of light energy into chemical energy through reduction with water of nitrate to ammonia. Nature 262:715–717.CrossRefGoogle Scholar
  12. CRESSWELL, R.C. and SYRETT, P.J. (1979). Ammonium inhibition of nitrate uptake by the diatom Phaeodactylum tricornutum. Plant Sci. Lett. 14:321–325.CrossRefGoogle Scholar
  13. CULLIMORE, J.V. and SIMS, A. P. (1981). Occurrence of two forms of glutamate synthase in Chlamydomonas reinhardii. Phytochemistry 20:597–600.CrossRefGoogle Scholar
  14. DE LA ROSA, M.A., Vega, J.M. and ZUMFT, W.G. (1981). Composition and structure of assimilatory nitrate reductase from Ankistrodesmus braunii. J. Biol. Chem. 256:5814–5819.Google Scholar
  15. DHUGGA, K.S. WAINES. J.G. and LEONARD, R.T. (1988). Correlated induction of nitrate uptake and membrane polypeptides in corn roots. Plant Physiol. 87:120–125.PubMedCrossRefGoogle Scholar
  16. ELRIFI, I.R. and TURPIN, D.H. (1987). The path of carbon flow during NO3”“-induced photosynthetic suppression in N-limited Selenastrum minutum. Plant Physiol. 83:97–104.PubMedCrossRefGoogle Scholar
  17. ERICSON, M.C. (1985). Purification and properties of glutamine synthetase from spinach leaves. Plant Physiol. 79:923–927.PubMedCrossRefGoogle Scholar
  18. FLORENCIO, F.J. and RAMOS, J.L. (1984). Purification and characterization of glutamine synthetase from the unicellular cyanobacterium Anacystis nidulans. Biochim. Biophys. Acta 838:39–48.CrossRefGoogle Scholar
  19. FLORES, E., GUERRERO, M.G. and LOSADA, M. (1983a). Photosynthetic nature of nitrate uptake and reduction in the cyanobacterium Anacystis nidulans. Biochim. Biophys. Acta 722:408–416.CrossRefGoogle Scholar
  20. FLORES, E., ROMERO, J.M., GUERRERO, M.G. and LOSADA, M. (1983b). Regulatory interaction of photosynthetic nitrate utilization and carbon dioxide fixation in the cyanobacterium Anacystis nidulans. Biochim. Biophys. Acta 725:529–532.CrossRefGoogle Scholar
  21. GRANT, B.R. (1968). Effect of carbon dioxide concentration and buffer system on nitrate and nitrite assimilation in Dunaliella tertiolecta. J. Gen Microbiol. 54:327–336.PubMedGoogle Scholar
  22. GRANT, B.R. and TURNER, I.M. (1969). Light-stimulated nitrate and nitrite assimilation in several species of algae. Comp. Biochem. Physiol. 29:995–1004.CrossRefGoogle Scholar
  23. GUERRERO, M.G. and LARA, C. (1987). Assimilation of inorganic nitrogen. In: The cyanobacteria (P. Fay and C. Van Baalen, eds.) Elsevier Science Publishers BV (Biomedical Division), Amsterdam, pp. 163–186.Google Scholar
  24. GUERRERO, M.G., VEGA, J.M. and LOSADA, M. (1981). The assimilatory nitrate-reducing system and its regulation. Annu. Rev. Plant Physiol. 32:169–204.CrossRefGoogle Scholar
  25. HIRASAWA, M. and KNAFF, D. (1985). Interaction of ferredoxin-linked nitrite reductase with ferredoxin. Biochim. Biophys. Acta 830:173–180.CrossRefGoogle Scholar
  26. HIRASAWA, M. and TAMURA, G. (1984). Flavin and iron-sulfur containing ferredoxin-linked glutamate synthase from spinach leaves. J. Biochem. 95:983–994.PubMedGoogle Scholar
  27. HIRASAWA, H., FUKUSHIMA, K., TAMURA, G. and KNAFF, D.B. (1984). Biochim. Biophys. Acta 719:145–154.CrossRefGoogle Scholar
  28. HIRASAWA, M., BOYER, J.M., GRAY, K.A., DAVIS, D.J. and KNAFF, D.B. (1986). The interaction of ferredoxin with chloroplast ferredoxin-linked enzymes. Biochim. Biophys. Acta 851:23–28.CrossRefGoogle Scholar
  29. HIREL, B., VIDAL, J. and GADAL, P. (1982). Evidence for a cytosolic-dependent light induction of chloroplastic glutamine synthetase during greening of etiolated rice leaves. Planta 155:17–23.CrossRefGoogle Scholar
  30. HIREL, B. WEATHERLEY, C., CRETIN, C. BERGOUNIOUX, C. and GADAL, P. (1984a). Multiple subunit composition of chloroplastic glutamine synthetase of Nicotiana tabacum L. Plant Physiol. 74:448–450.PubMedCrossRefGoogle Scholar
  31. HIREL, B., MCNALLY, S., GADAL, P., SUMAR, N. and STEWART, G. R. (1984b). Cytosolic glutamine synthetase in higher plants. A comparative inmmunological study. Eur. J. Biochem. 138:63–66.PubMedCrossRefGoogle Scholar
  32. HOUSE, C.H. and ANDERSON, J.M. (1980). Light-dependent reduction of nitrate by pea chloroplasts in the presence of nitrate reductase and C4~dicarboxylic acids. Phytochemistry 19:1925–1930.CrossRefGoogle Scholar
  33. HOWARD, W.D. and SOLOMONSON, L.P. (1982). Quaternary structure of assimilatory NADH:nitrate reductase from Chlorella. J. Biol. Chem. 257:10243–10250.PubMedGoogle Scholar
  34. IDA, S. and MIKAMI, B. (1986). Spinach ferredoxin-nitrite reductase: A purification procedure and characterization of chemical properties. Biochim. Biophys. Acta 871:167–176.CrossRefGoogle Scholar
  35. KAMACHI, K., AMEMIYA, Y., OGURA, N. and NAKAGAWA, H. (1987). Immuno-gold localization of nitrate reductase in spinach (Spinacea oleracea) leaves. Plant Cell Physiol. 28:333–338.Google Scholar
  36. KAMIN, H. and STEINPRIVALLE, L. (1987). Nitrite reductase. In: Inorganic Nitrogen Metabolism (W.R. Ullrich, P.J. Aparicio, P.J. Syrett and F. Castillo, eds.). Springer-Verlag, Berlin, pp. 112–117.CrossRefGoogle Scholar
  37. KANAZAWA, T.K., KANAZAWA, M.R., KIRK, M.R. and BASSHAM, J.A. (1972). Regulatory effects of ammonia on carbon metabolism in Chlorella pyrenoidosa during photosynthesis and respiration. Biochim. Biophys. Acta 265:656–669.Google Scholar
  38. KRETOVICH, W.L., EVSTIGNEEVA, Z.G., PUSHKIN, A.V. and DZHOKHARIDZE, T.Z. (1981). Two forms of glutamine synthetase in leaves of Cucurbita pepo. Phytochemistry 20:625–629.CrossRefGoogle Scholar
  39. LARA, C. and ROMERO, J.M. (1986). Distinctive light and CO2-fixation requirements of nitrate and ammonium utilization by the cyanobacterium Anacystis nidulans. Plant Physiol. 81: 686–688.PubMedCrossRefGoogle Scholar
  40. LARA, C. ROMERO, J.M. and GUERRERO, M.G. (1987a). Regulated nitrate transport in the cyanobacterium Anacystis nidulans. J. Bacteriol. 169:4376–4378.PubMedGoogle Scholar
  41. LARA, C., ROMERO, J.M., CORONIL, T. and GUERRERO, M.G. (1987b). Interactions between photosynthetic nitrate assimilation and CO2 fixation in cyanobacteria. In: Inorganic Nitrogen Metabolism (W.R. Ullrich, P.J. Aparicio, P.J. Syrett and F. Castillo, eds.) Springer-Verlag, Berlin, pp. 45–52.CrossRefGoogle Scholar
  42. LARSSON, C.-M. and LARSSON, M. (1987). Regulation of nitrate utilization in green algae. In: Inorganic Nitrogen Metabolism (W.R. Ullrich, P.J. Aparicio, P.J. Syrett and F. Castillo, eds.). Springer-Verlag, Berlin, pp. 203–207CrossRefGoogle Scholar
  43. LARSSON, M., INGERMARSSON, B. and LARSSON, C.-M. (1982). Photosynthetic energy supply for NO3 -assimilation in Scenedesmus. Physiol. Plant. 55:301–308.CrossRefGoogle Scholar
  44. LARSSON, M., OLSSON, T. and LARSSON, C.-M. (1985). Distribution of reducing power between photosynthetic carbon and nitrogen assimilation in Scenedesmus. Planta 164:246–253.CrossRefGoogle Scholar
  45. LAWRIE, A.C., CODD, G.A. and STEWART, W.D.P. (1976). The incorporation of nitrogen into products of recent photosynthesis in Anabaena cylindrica Lemm. Arch. Microbiol. 107:15–24.PubMedCrossRefGoogle Scholar
  46. LEA, P.J. and MIFLIN, B.J. (1974). An alternative route for nitrogen assimilation in higher plants. Nature 251:614–616.PubMedCrossRefGoogle Scholar
  47. LEA, P.J., MILLS, R., WALLSGROVE, R.M. and MIFLIN, B.J. (1982). Assimilation of nitrogen and synthesis of amino acids in chloroplast and cyanobacteria (blue-green algae). In: Origin of Chloroplasts (J.A. Schiff, ed.). Elsevier North Holland, New York, pp. 149–178.Google Scholar
  48. LEHNER, K. and HELDT, H.W. (1978). Dicarboxylate transport across the inner membrane of the chloroplast envelope. Biochim. Biophys. Acta 368:269–278.Google Scholar
  49. LOPEZ-RUIZ, A., ROLDAN, J.M., VERLEBEN, J. P. and DIEZ, J. (1985a). Nitrate reductase from Monoraphidium braunii. Immunocytochemical localization and immunological characterization. Plant Physiol. 78:614–618.PubMedCrossRefGoogle Scholar
  50. LOPEZ-RUIZ, A., VERLEBEN, J.P., ROLDAN, J.M. and DIEZ, J. (1985b). Nitrate reductase of green algae is located in the pyrenoid. Plant Physiol. 79:1006–1010.PubMedCrossRefGoogle Scholar
  51. LOSADA, M. and GUERRERO, M.G. (1979). The photosynthetic reduction of nitrate and its regulation. In: Photosynthesis in Relation to Model Systems (J. Barber, ed.) Elsevier/North Holland Biomedical Press, Amsterdam, pp. 365–408.Google Scholar
  52. LOSADA, M., GUERRERO, M.G. and VEGA, J.M. (1981). The assimilatory reduction of nitrate. In: Biology of Inorganic Nitrogen and Sufur (H. Bothe and A. Trebst, eds.) Springer, Berlin, pp. 30–63.CrossRefGoogle Scholar
  53. LOSADA, M., HERVAS, M. and ORTEGA, J.M. (1987). Photosynthetic assimilation of the primordial bioelements. In: Inorganic Nitrogen Metabolism (W.R. Ullrich, P.J. Aparicio, P.J. Syrett and F. Castillo, eds.). Springer-Verlag, Berlin, pp. 3–15.CrossRefGoogle Scholar
  54. MARQUEZ, A.J., GOTOR, C., ROMERO, L.C., GALVAN, F. and VEGA, J.M. (1986). Ferredoxin-glutamate synthase from Chlamydomonas reinhardii. Prosthetic groups and preliminary studies of mechanism. Int. J. Biochem. 18:531–535.CrossRefGoogle Scholar
  55. MATOH, T. and TAKAHASHI, E. (1981). Glutamate synthase in greening pea shoots. Plant Cell Physiol. 22:727–731.Google Scholar
  56. MATOH, T. and TAKAHASHI, E. (1982). Changes in the activies of ferredoxin and NADH-glutamate synthase during seedling development of peas. Planta 154:289–294.CrossRefGoogle Scholar
  57. MATOH, T., IDA, S., and TAKAHASHI, E. (1980). Isolation and characterization of NADH-glutamate synthase from pea (Pisum sativum L.). Plant Cell Physiol. 21:1461–1474.Google Scholar
  58. MCNALLY, S.F., HIREL, B., GADAL, P., MANN, F. and STEWART, G.R. (1983). Glutamine synthetase of higher plants. Evidence for a specific isoform content related to their possible physiological role and their compartmentation within the leaf. Plant Physiol. 72:22–25.PubMedCrossRefGoogle Scholar
  59. MIFLIN, B.J. AND LEA, P.J. (1982). Ammonia assimilation and amino acid metabolism. In: Encyclopedia of Plant Physiology, New Series, Vol. 14A (D. Boulder and B. Parthier, eds.) Springer, Berlin, pp 3–64.Google Scholar
  60. MIKAMI, B. and IDA, S. (1984). Purification and properties of ferredoxin-nitrate reductase from the cyanobacterium Plectonema boryanum. Biochim. Biophys. Acta 791:294–304.CrossRefGoogle Scholar
  61. NAKAGAWA, H., YONEMURA, Y., YAMAMOTO, H., SATO, T., OGURA, N. and SATO, R. (1985). Spinach nitrate reductase: Purification, molecular weight and subunit composition. Plant Physiol. 77:124–128.PubMedCrossRefGoogle Scholar
  62. NEYRA, C.A. and HAGEMAN, R.H. (1974). Dependence of nitrite reduction on electron transport in chloroplasts. Plant Physiol. 54:480–483.PubMedCrossRefGoogle Scholar
  63. ORR, J., KEEFER, L.M., KEIM, P., DINH NGUYEN, T., WELLEMS, Th., HEINRIKSON, R.L. and HASELKORN, R. (1981). Purification, physical characterization and NH2-terminal sequence of glutamine synthetase from the cyanobacterium Anabaena 7120. J. Biol. Chem. 256:13091–13098.PubMedGoogle Scholar
  64. ORTEGA, T., CASTILLO, F. and CARDENAS, J. (1976). Photolysis of water coupled to nitrate reduction by Nostoc muscorum subcellular particles. Biochem. Biophys. Res. Commun. 71:885–891.PubMedCrossRefGoogle Scholar
  65. PAUL, J.S., CORNWELL, K.L. and BASSHAM, J.A. (1978). Effects of ammonia on carbon metabolism in photosynthesizing isolated cells from Papaver somniferum L. Planta 142:49–54.CrossRefGoogle Scholar
  66. PLATT, S.T., PLAUT, Z. and BASSHAM, J.A. (1977). Ammonia regulation of carbon metabolism in phtosynthesizing leaf discs. Plant Phsyiol. 60:739–742.CrossRefGoogle Scholar
  67. RATHNAM, C.K.M. (1978). Malate and dihydroxyacetone phosphate-dependent nitrate reduction in spinach leaf protoplasts. Plant Physiol. 62:220–223.PubMedCrossRefGoogle Scholar
  68. RAVEN, J.A. (1977). ATP synthesis coupled to nitrate photoreduction in the alga Hydrodictyon africanum. J. Exp. Bot. 28:314–319.CrossRefGoogle Scholar
  69. REHFIELD, D.W. and JENSEN, R.G. (1973). Metabolism of separated leaf cells. III. Effect of calcium and ammoniun on product distribution during photosynthesis with cotton cells. Plant Physiol. 52:17–22.CrossRefGoogle Scholar
  70. ROLDAN, J.M., ROMERO, F., LOPEZ-RUIZ, A., DIEZ, J. and VERLEBEN, J.P. (1987). Immunological approaches to inorganic nitrogen metabolism. In: Inorganic Nitrogen Metabolism (W.R. Ullrich, P.J. Aparicio, P.J. Syrett and F. Castillo, eds.). Springer-Verlag, Berlin, pp. 94–98.CrossRefGoogle Scholar
  71. ROMERO, J.M. and LARA, C. (1987) Photosynthetic assimilation of NO3- by intact cells of the cyanobacterium Anacystis nidulans. Influence of NO3- and NH4+ assimilation on CO2 fixation. Plant Physiol. 83:208–212.PubMedCrossRefGoogle Scholar
  72. ROMERO, J.M., LARA, C. and GUERRERO, M.G. (1985). Dependence of nitrate utilization upon active CO2 fixation in Anacystis nidulans; A regulatory aspect of the interaction between photosynthetic carbon and nitrogen metabolism. Arch. Biochem. Biophys. 237:396–401.PubMedCrossRefGoogle Scholar
  73. ROMERO, J.M., CORONIL, T., LARA, C. and GUERRERO, M.G. (1987). Modulation of nitrate uptake in Anacystis nidulans by the balance between ammonium assimilation and CO2 fixation. Arch. Biochem. Biophys. 256:578–584.PubMedCrossRefGoogle Scholar
  74. ROMERO, L.C., GALVAN, F. and VEGA, J.M. (1987). Purification and properties of the siroheme-containing ferredoxin-nitrite reductase from Chlamydomonas reinhardtii. Biochim. Biophys. Acta 914:55–63.Google Scholar
  75. SAMPAIO, M.J.A.M., ROWELL, P. and STEWART, W.D.P. (1979). Purification and some properties of glutamine synthetase from the nitrogen-fixing cyanobacteria Anabaena cylindrica and a Nostoc sp. J. Gen. Microbiol. 111:181–191.Google Scholar
  76. SERRANO, A., RIVAS, J. and LOSADA, M. (1981). Nitrate and nitrite as “in vivo” quenchers of chlorophyll fluorescence in blue-green algae. Photosyn. Res. 2:175–184.CrossRefGoogle Scholar
  77. SIVAK, M.N. and WALKER, D.A. (1985). Can in vivo photosynthesis be modified?. Ann. Proc. Phytochem. Soc. Eur. 26:29–44.Google Scholar
  78. SOLOMONSON, L.P. and BARBER, M.J. (1987). Structure-function relationships of assimilatory nitrate reductase. In: Inorganic Nitrogen Metabolism (W.R. Ullrich, P.J. Aparicio, P.J. Syrett and F. Castillo, eds.). Springer-Verlag, Berlin, pp. 71–75.CrossRefGoogle Scholar
  79. SUZUKI, A., VIDAL, J. and GADAL, P. (1982). Glutamate synthase isoforms in rice. Inmunological studies of enzymes in green leaf, etiolated leaf and root tissue. Plant Physiol. 70:827–832.PubMedCrossRefGoogle Scholar
  80. SUZUKI, A., NATO, A. and GADAL, P. (1984). Glutamate synthase isoforms in tobacco cultured cells. Plant Sci. Lett. 33:93–101.CrossRefGoogle Scholar
  81. SWADER, J.A. and STOCKING, C.R. (1971). Nitrate and nitrite reduction by Wolffia arrhiza. Plant Physiol. 47:189–191.PubMedCrossRefGoogle Scholar
  82. SYRETT, P.J. (1981). Nitrogen metabolism in microalgae. Can. Bull. Fish. Aquat. Sci. 210:182–210.Google Scholar
  83. SYRETT, P.J. and MORRIS, I. (1963). The inhibition of nitrate assimilation by ammonium in Chlorella. Biochim. Biophys. Acta 67:566–575.CrossRefGoogle Scholar
  84. THACKER, A. and SYRETT, P.J. (1972). The assimilation of nitrate and ammonium by Chlamydomonas reinhardii. New Phytol. 71:423–433.CrossRefGoogle Scholar
  85. TILLBERG, J.E., GIERSCH, C. and HEBER, U. (1977). CO2 reduction by intact chloroplasts under a diminished proton gradient. Biochim. Biophys. Acta 461:31–47.PubMedCrossRefGoogle Scholar
  86. ULLRICH, W.R. (1987). Nitrate and ammonium uptake in green algae and higher plants: Mechanism and relationship with nitrate metabolism. In: Inorganic Nitrogen Metabolism (W.R. Ullrich, P.J. Aparicio, P.J. Syrett and F. Castillo, eds.). Springer-Verlag, Berlin, pp. 32–38.CrossRefGoogle Scholar
  87. VAN NIEL, C.B., ALLEN, M.B. and WRIGHT, B.E. (1953). On the photochemical reduction of nitrate by algae. Biochim. Biophys. Acta 12:67–74.CrossRefGoogle Scholar
  88. VEGA, J.M. and KAMIN, H. (1977) Spinach nitrite reductase: Purification and properties of siroheme-containing iron-sulfur enzyme. J. Biol. Chem. 252:896–909.PubMedGoogle Scholar
  89. VEGA, J.M., CARDENAS, J. and LOSADA, M. (1980). Ferredoxin nitrite reductase. Meth. Enzymol. 69:255–270.CrossRefGoogle Scholar
  90. WALKER, A. and SIVAK, M.N. (1986). Photosynthesis and phosphate: A cellular affair?. Trends Biochem. Sci. 11:176–179.CrossRefGoogle Scholar
  91. WALLSGROVE, R.M. and LEA, P.J. (1985). Photosynthetic nitrogen metabolism. In: Photosynthetic Mechanisms and the Environment (J. Barber and N.R. Baker, eds). Elsevier Science Pub. B.V. (Biomedical Division), Amsterdam, pp. 389--418.Google Scholar
  92. WALLSGROVE, R.M., LEA, P.J. and MIFLIN, B.J. (1979). Distribution of the enzymes of nitrogen assimilation within the pea leaf cell. Plant Physiol. 63:232–236.PubMedCrossRefGoogle Scholar
  93. WALLSGROVE, R.M. , LEA, P.J. and MIFLIN, B.J. (1982). The development of NAD(P)H-dependent and ferredoxin-dependent glutamate synthase in greening barley and pea leaves. Planta 154:473–476.CrossRefGoogle Scholar
  94. WALLSGROVE, R.M., KEYS, A.J., LEA, P.J. and MIFLIN, B.J. (1983) Photosynthesis, photorespiration and nitrogen metabolism. Plant Cell Environ. 6:301–309.Google Scholar
  95. WOO, K.C. and CANVIN, D.I. (1980). Effect of ammonia on photosynthetic carbon fixation in isolated spinach leaves cells. Can. J. Bot. 58:505–510.CrossRefGoogle Scholar
  96. WOO, K.C. and OSMOND, C.B. (1982). Stimulation of ammonia and 2-oxoglutarate-dependent O2 evolution in isolated chloroplasts by dicarboxylates and the role of the chloroplast in photorespiratory nitrogen recycling. Plant Physiol. 69:591–596.PubMedCrossRefGoogle Scholar
  97. WOO, K.C., BOYLE, F.A., FLUGGE, I.U. and HELDT, H.W. (1987a) 15N-ammonia assimilation, 2-oxoglutarate transport, and glutamate export in spinach chloroplasts in the presence of dicarboxylates in the light. Plant Physiol. 85:621–625.PubMedCrossRefGoogle Scholar
  98. WOO, K.C., FLUGGE, I.U. and HELDT, H.W. (1987b). A two translocator model for the transport of 2-oxoglutarate and glutamate in chloroplasts during ammonia assimilation in the light. Plant Phsyiol. 84:624–632.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Catalina Lara
    • 1
  • Miguel G. Guerrero
    • 1
  1. 1.Instituto de Bioquímica Vegetal y FotosíntesisUniversidad de Sevilla-CSICSevillaSpain

Personalised recommendations