Advertisement

Dielectric Dispersion in Hydrated Purple Membrane

  • Imre Kovacs
  • György Varo
Part of the NATO ASI Series book series (NSSA, volume 168)

Summary

Dielectric dispersion effects were studied in purple membrane of different hydration levels. The capacitance and conductivity were measured over the frequency range 102Hz to 105Hz. With increase in the hydration level, the conductivity increases sharply at the critical hydration hc=0 .06 gH2O/gbR. This critical hydration is close to the extent of the first continuous strongly bound water layer and is interpreted as the threshold for percolative proton transfer. Above 0.1 gH2O/gbR water content Maxwell-Wagner relaxation also appears, showing the presence of a bulk water phase.

Keywords

High Water Content Arrhenius Parameter Hydration Level Dielectric Dispersion Purple Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Stoeckenius, R.H. Lozier, R.A. Bogomoli, Bacteriorhodopsin and the Purple Membrane of Halobacteria, Biochimica et Biophysica Acta, 505;215(1979).PubMedGoogle Scholar
  2. 2.
    K.J. Lányi, Bacteriorhodopsin and related light-energy converters, in “Bioenergeticas”, L. Ernster, Elsevier Amsterdam, New York, Oxford (1984).Google Scholar
  3. 3.
    R. Korenstein and B. Hess, Hydration effects on CIS-TRANS isomerisation of bacteriorhodopsin, FEBS Lett., 82:7(1977).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Korenstein and B. Hess, Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membrane, Natur. 270:184 (1977).CrossRefGoogle Scholar
  5. 5.
    G. Váró, L. Keszthelyi, Photoelectric signals from dried oriented purple membranes of Halobacterium halobium, Biophys. J., 43:47(1983).PubMedCrossRefGoogle Scholar
  6. 6.
    G. Váró, L. Keszthelyi, Arrhenius parameters of the bacteriorhodopsin photocycle in dried oriented samples, Biophys.J.47:243(1985).PubMedCrossRefGoogle Scholar
  7. 7.
    G. Váró, L. Eisenstein, Infrared studies of water induced conformation changes in bacteriorhodopsin, Eur.Biophys.J. 14:163(1987).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Oesterhelt, W. Stoeckenius, Isolation of purple membrane of Halobacterium halobium and its fractionation into red and purple samples, Methods Enzymol. 31:667 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    G. Váró, Dried Oriented Purple Membrane Samples, Acta Biol. Acad. Sci. Hung. 32:301(1981).Google Scholar
  10. 10.
    R. Pethig, Dielectric and Electronic Properties of Biological Materials, John Wiley and Sons, Ltd., New York (1979).Google Scholar
  11. 11.
    G. Careri, A. Giasanti and J.A. Rupley, Proton percolation on hydrated lysozyme powders, Proc.Natl.Acad.Sci. USA, 33:6810 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Imre Kovacs
    • 1
  • György Varo
    • 2
  1. 1.Central Research Institute for PhysicsBudapest 114Hungary
  2. 2.Institute of BiophysicsBiological Research CenterSzegedHungary

Personalised recommendations