Advertisement

The Structure and Function of Photosystem II

  • Wim Vermaas
Part of the NATO ASI Series book series (NSSA, volume 168)

Abstract

Photosystem II (PS II) is a pigment-protein complex in thylakoid membranes from all oxygenic photosynthetic organisms (cyanobacteria and photosynthetic eukaryotes). It catalyzes the light-induced reduction of plastoquinone by water through a number of redox reactions. The electron transport chain in PS II is composed of various protein-bound components, which are held in close proximity and suitable orientation with respect to each other by the protein environment, so that a rapid and efficient electron transport is feasible. The PS II complex consists of at least five integral membrane proteins in the thylakoid (together forming the PS II “core complex”), in addition to several peripheral proteins. Many of these polypeptides interact with one or more components of the electron transport chain or with light-harvesting pigments, such that these protein ligands can fulfill a specific function in PS II.

Keywords

Oxygen Evolution Purple Bacterium Herbicide Resistance Primary Charge Separation Bacterial Reaction Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1985) Structure of the protein subunits in the photosyn-thetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318, 618–624PubMedCrossRefGoogle Scholar
  2. 2.
    Michel, H., Epp, O. and Deisenhofer, J. (1986) Pigment-protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis. EMBO J. 5, 2445–2451PubMedGoogle Scholar
  3. 3.
    Allen, J.P., Feher, G., Yeates, T.O., Komiya, H. and Rees, D.C. (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors. Proc. Natl. Acad. Sci. USA 84, 5730–5734PubMedCrossRefGoogle Scholar
  4. 4.
    Allen, J.P., Feher, G., Yeates, T.O., Komiya, H. and Rees, D.C. (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: The protein subunits. Proc. Natl. Acad. Sci. USA 84, 6162–6166PubMedCrossRefGoogle Scholar
  5. 5.
    Chang, C.-H., Tiede, D., Tang, J., Smith, U., Norris, J. and Schiffer, M. (1986) Structure of Rhodopseudomonas sphaeroides R-26 reaction center. FEBS Lett. 205, 82–86PubMedCrossRefGoogle Scholar
  6. 6.
    Rochaix, J.-D., Dron, M., Rahire, M. and Malnoe, P. (1984) Sequence homology between the 32K dalton and the D2 chloroplast membrane polypeptides of Chlamydomonas reinhardii. Plant Mol. Biol. 3, 363–370CrossRefGoogle Scholar
  7. 7.
    Michel, H. and Deisenhofer, J. (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II, Biochem. 27, 1–7CrossRefGoogle Scholar
  8. 8.
    Rutherford, A.W. (1986) How close is the analogy between the reaction centre of Photosystem II and that of purple bacteria? Biochem. Soc. Trans. 14, 15–17PubMedGoogle Scholar
  9. 9.
    Rutherford, A.W. (1987) How close is the analogy between the reaction centre of PS II and that of purple bacteria? 2. The electron acceptor side. In: Progress in Photosynthesis Research, Vol. I (J. Biggins, ed.), pp. 277–283, Martinus Nijhoff, DordrechtGoogle Scholar
  10. 10.
    Barber, J. (1987) Photosynthetic reaction centres: a common link. Trends in Biochem. Sci. 12, 321–326CrossRefGoogle Scholar
  11. 11.
    Rochaix, J.-D. and Erickson, J. (1988) Function and assembly of photosystem II: genetic and molecular analysis. Trends in Biochem. Sci. 13, 56–59CrossRefGoogle Scholar
  12. 12.
    Satoh, K. (1988) Reality of P-680 chlorophyll protein. Identification of the site of primary photochemistry in oxygenic photosynthesis. Physiol. Plant. 72, 209–212CrossRefGoogle Scholar
  13. 13.
    Vermaas, W.F.J. (1988) Photosystem II function as probed by mutagenesis. In: Light energy transduction in photosynthesis: higher plants and bacterial models (D.A. Bryant and S.E. Stevens, Jr., eds.), Waverley Press, in pressGoogle Scholar
  14. 14.
    Mathis, P. and Rutherford, A.W. (1987) The primary reactions of photosystems I and II of algae and higher plants. In: Photosynthesis (J. Amesz, ed.), pp. 63–96, Elsevier, AmsterdamCrossRefGoogle Scholar
  15. 15.
    Kuwabara, T., Reddy, K.J. and Sherman, L.A. (1987) Nucleotide sequence of the gene from the cyanobacterium Anacystis nidulans R2 encoding the Mn-stabilizing protein involved in photosystem II water oxidation. Proc. Natl. Acad. Sci. USA 84, 8230–8234PubMedCrossRefGoogle Scholar
  16. 16.
    Mayfield, S.P., Bennoun, P. and Rochaix, J.-D. (1987) Expression of the nuclear encoded 0EE1 protein is required for oxygen evolution and stability of photosystem II particles in Chlamydomonas reinhardtii. EMBO J. 6, 313–318PubMedGoogle Scholar
  17. 17.
    Philbrick, J.B. and Zilinskas, B.A. (1988) Cloning, nucleotide sequence and mutational analysis of the gene encoding the photosystem II manganese-stabilizing polypeptide of Synechocystis 6803. Mol. Gen. Genet., in pressGoogle Scholar
  18. 18.
    Sayre, R.T., Andersson, B. and Bogorad, L. (1986) The topology of a membrane protein: the orientation of the 32 kd Qb-binding chloroplast thylakoid membrane protein. Cell 47, 601–608PubMedCrossRefGoogle Scholar
  19. 19.
    Doring, G., Stiehl, H.H. and Witt, H.T. (1967) A second chlorophyll reaction in the electron chain of photosynthesis — registration by the repetitive excitation technique. Z. Naturforsch. 22b, 639–644Google Scholar
  20. 20.
    Govindjee and Govindjee, R. (1975) Introduction to photosynthesis. In: Bioenergetics of Photosynthesis (Govindjee, ed.), pp. 1–50, Academic Press, New YorkGoogle Scholar
  21. 21.
    Diner, B.A. (1986) Photosystems I and II: structure, proteins and cofactors. In: Photosynthesis III, Encyclopedia of Plant Physiology, New Series, Vol. 19 (L.A. Staehelin and C.J. Arntzen, eds.), pp. 422–436, Springer Verlag, BerlinGoogle Scholar
  22. 22.
    Klevanik, A.V., Klimov, V.V., Shuvalov, V.A. and Krasnovskii, A.A. (1977) Reduction of pheophytin in the photoreaction of photosystem II of higher plants. Dokl. Akad. Nauk SSSR 236, 241–244Google Scholar
  23. 23.
    Shuvalov, V.A., Klimov, V.V., Dolan, E. , Parson, W.W. and Ke, B. (1980) Nanosecond fluorescence and absorbance changes in photosystem II at low redox potential. FEBS Lett. 118, 279–282CrossRefGoogle Scholar
  24. 24.
    Michel-Beyerle, M.E., Plato, M., Deisenhofer, J., Michel, H., Bixon, M. and Jortner, J. (1988) Unidirectionality of charge separation in reaction centers of photosynthetic bacteria. Biochim. Biophys. Acta 932, 52–70CrossRefGoogle Scholar
  25. 25.
    Omata, T., Murata, N. and Satoh, K. (1984) Quinone and pheophytin in the photosynthetic reaction center II from spinach chloroplasts. Biochim. Biophys. Acta 765, 403–405CrossRefGoogle Scholar
  26. 26.
    Nanba, O. and Satoh, K. (1987) Isolation of a photosystem II reaction center consisting of D-l and D-2 polypeptides and cytochrome b-559. Proc. Natl. Acad. Sci. USA 84, 109–112PubMedCrossRefGoogle Scholar
  27. 27.
    Rutherford, A.W. (1985) Orientation of EPR signals arising from components in Photosystem II membranes. Biochim. Biophys. Acta 807, 189–201CrossRefGoogle Scholar
  28. 28.
    Vermaas, W.F.J., Williams, J.G.K. and Arntzen, C.J. (1987) Site-directed mutations of two histidine residues in the D2 protein inactivate and destabilize Photosystem II in the cyanobacterium Synechocystis 6803. Z. Naturforsch. 42c, 762–768Google Scholar
  29. 29.
    Vermaas, W.F.J., Ikeuchi, M. and Inoue, Y. (1988) Protein composition of the photosystem II core complex in genetically engineered mutants of the cyanobacterium Synechocystis sp. PCC 6803. Photosynth. Res., in pressGoogle Scholar
  30. 30.
    Williams, J.G.K. (1988) Construction of specific mutations in the photosystem II photosynthetic reaction center by genetic engineering methods in the cyanobacterium Synechocystis 6803. Meth. Enzymol., in pressGoogle Scholar
  31. 31.
    Vermaas, W.F.J., Carpenter, S. and Bunch, C. (1988) Specific mutagenesis as a tool for the analysis of structure/function relationships in Photosystem II. In: Applications of Molecular Biology in Bioenergetics of Photosynthesis (G.S. Singhal et al., eds.), Narosa Publishing House, New Delhi, in pressGoogle Scholar
  32. 32.
    Woodbury, N.W., Parson, W.W., Gunner, M.R., Prince, R.C. and Dutton, P.L. (1986) Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphthoquinones or benzoquinones in place of ubiquinones. Biochim. Biophys. Acta 851, 6–22PubMedCrossRefGoogle Scholar
  33. 33.
    Diner, B.A., de Vitry, C. and Popot, J.-L. (1988) Quinone exchange in the QA binding site of photosystem II reaction center core preparations isolated from Chlamydomonas reinhardtii. Biochim. Biophys. Acta 934, 47–54CrossRefGoogle Scholar
  34. 34.
    Van Gorkom, H.J. (1974) Identification of the reduced primary electron acceptor of photosystem II as a bound semiquinone anion. Biochim. Biophys. Acta 347, 439–442PubMedCrossRefGoogle Scholar
  35. 35.
    Dutton, P.L., Prince, R.C. and Tiede, D.M. (1978) The reaction center of photosynthetic bacteria. Photochem. Photobiol. 28, 939–949CrossRefGoogle Scholar
  36. 36.
    Robinson, H.H. and Crofts, A.R. (1983) Kinetics of the oxidation-reduction reactions of the photosystem II quinone acceptor complex, and the pathway for deactivation. FEBS Lett. 153, 221–226CrossRefGoogle Scholar
  37. 37.
    Glaser, M., Wolff, Ch. and Renger, G. (1976) Indirect evidence for a very fast recovery kinetics of chlorophyll-aII in spinach chloroplasts. Z. Naturforsch. 31c, 712–721Google Scholar
  38. 38.
    Velthuys, B.R. (1981) Electron-dependent competition between plastoquinone and inhibitors for binding to photosystem II. FEBS Lett. 126, 277–281CrossRefGoogle Scholar
  39. 39.
    Wraight, C.A. (1981) Oxidation-reduction physical chemistry of the acceptor quinone complex in bacterial photosynthetic reaction centers: evidence for a new model of herbicide activity. Isr. J. Chem. 21, 348–354Google Scholar
  40. 40.
    Vermaas, W.F.J., Renger, G. and Dohnt, G. (1984) The reduction of the oxygen-evolving system in chloroplasts by thylakoid components. Biochim. Biophys. Acta 764, 194–202CrossRefGoogle Scholar
  41. 41.
    Velthuys, B.R. and Amesz, J. (1974) Charge accumulation at the reducing side of system 2 of photosynthesis. Biochim. Biophys. Acta 333, 85–94PubMedCrossRefGoogle Scholar
  42. 42.
    Vermaas, W.F.J., Renger, G. and Amtzen, C.J. (1984) Herbicide/quinone binding interactions in photosystem II. Z. Naturforsch. 39c, 368–373Google Scholar
  43. 43.
    Trebst, A. (1987) The three-dimensional structure of the herbicide-binding niche on the reaction center polypeptides of Photosystem II. Z. Naturforsch. 42c, 742–750Google Scholar
  44. 44.
    Vermaas, W.F.J., Arntzen, C.J., Gu, L.-Q. and Yu, C.A. (1983) Interactions of herbicides and azidoquinones at a photosystem II binding site in the thylakoid membrane. Biochim. Biophys. Acta 723, 266–275Google Scholar
  45. 45.
    Vermaas, W.F.J., Dohnt, G. and Renger, G. (1984) Binding and release kinetics of inhibitors of Q oxidation in thylakoid membranes. Biochim. Biophys. Acta 765, 74–83CrossRefGoogle Scholar
  46. 46.
    Pfister, K. and Arntzen, C.J. (1979) The mode of action of photosystem II-specific inhibitors in herbicide-resistant weed biotypes. Z. Naturforsch. 34c, 996–1009Google Scholar
  47. 47.
    Hirschberg, J. and Mcintosh, L. (1983) Molecular basis of herbicide resistance in Amaranthus hybridus. Science 222, 1346–1349PubMedCrossRefGoogle Scholar
  48. 48.
    Vermaas, W.F.J, and Arntzen, C.J. (1983) Synthetic quinones influencing herbicide binding and photosystem II electron transport; the effect of triazine resistance on quinone binding properties in thylakoid membranes. Biochim. Biophys. Acta 725, 483–491CrossRefGoogle Scholar
  49. 49.
    Holt, J.S., Stemler, A.J. and Radosevich, S.R. (1981) Differential light responses of photosynthesis by triazine-resistant and triazine-susceptible Senecio vulgaris biotypes. Plant Physiol. 67, 744–748PubMedCrossRefGoogle Scholar
  50. 50.
    Bowes, J., Crofts, A.R. and Arntzen, C.J. (1980) Redox reactions on the reducing side of Photosystem II in chloroplasts with altered herbicide binding properties. Arch. Biochem. Biophys. 200, 303–308PubMedCrossRefGoogle Scholar
  51. 51.
    Ort, D.R., Ahrens, W.H., Martin, B. and Stoller, E.W. (1983) Comparison of photosynthetic performance in triazine-resistant and susceptible biotypes of Amaranthus hybridus. Plant Physiol. 72, 925–930PubMedCrossRefGoogle Scholar
  52. 52.
    Wolber, P.K., Eilmann, M. and Steinback, K.E. (1986) Mapping of the triazine binding site to a highly conserved region of the Q protein. Arch. Biochem. Biophys. 248, 224–233PubMedCrossRefGoogle Scholar
  53. 53.
    Trebst, A. (1986) The topology of the plastoquinone and herbicide-binding polypeptides of photosystem II in the thylakoid membrane. Z. Naturforsch. 41c, 240–245Google Scholar
  54. 54.
    Gingrich, J.C., Buzby, J.S., Stirewalt, V.L. and Bryant, D.A. (1988) Genetic analysis of two new mutations resulting in herbicide resistance in the cyanobacterium Synechocystis sp. PCC 7002. Photosynth. Res., in pressGoogle Scholar
  55. 55.
    Sinning, I. and Michel, H. (1987) Sequence analysis of mutants from Rhodopseudomonas viridis resistant to the herbicide terbutryn. Z. Naturforsch. 42c, 751–754Google Scholar
  56. 56.
    Erickson, J.M., Rahire, M., Rochaix, J.-D. and Mets, L. (1985) Herbicide resistance and cross-resistance: changes at three distinct sites in the herbicide-binding protein. Science 228, 204–207PubMedCrossRefGoogle Scholar
  57. 57.
    Johanningmeier, U., Bodner, U. and Wildner, G.F. (1987) A new mutation in the gene coding for the herbicide-binding protein in Chlamvdomonas. FEBS Lett. 211, 221–224CrossRefGoogle Scholar
  58. 58.
    Erickson, J.M., Rahire, M., Bennoun, P., Delepelaire, P., Diner, B. and Rochaix, J.-D. (1984) Herbicide resistance in Chlamydomonas reinhardtii results from a mutation in the chloroplast gene for the 32-kilodalton protein of photosystem II. Proc. Natl. Acad. Sci. USA 81, 3617–3621PubMedCrossRefGoogle Scholar
  59. 59.
    Golden, S.S. and Haselkorn, R. (1985) Mutation of herbicide resistance maps within the psbA gene of Anacystis nidulans R2. Science 229,1104–1107PubMedCrossRefGoogle Scholar
  60. 60.
    Paddock, M.L., Williams, J.C., Rongey, S.H., Abresch, E.C., Feher, G. and Okamura, M.Y. (1987) Characterization of three herbicide-resistant mutants of Rhodopseudomonas sphaeroides 2.4.1: structure-function relationship. In : Progress in Photosynthesis Research, Vol. III (J. Biggins, ed.), pp. 775–778, Martinus Nijhoff, DordrechtGoogle Scholar
  61. 61.
    Bylina, E.J. and Youvan, D.C. (1987) Genetic engineering of herbicide resistance: saturation mutagenesis of isoleucine 229 of the reaction center L subunit. Z. Naturforsch. 42c, 769–774Google Scholar
  62. 62.
    Gilbert, C.W., Williams, J.G.K., Williams, K.A.L. and Arntzen, C.J. (1985) Herbicide action in photosynthetic bacteria. In: Molecular Biology of the Photosynthetic Apparatus (K.E. Steinback, S. Bonitz, C.J. Arntzen and L. Bogorad, eds.), pp. 67–71, Cold Spring Harbor Laboratory, Cold Spring Harbor 63.Google Scholar
  63. 62a.
    Debus, R.J., Feher, G. and Okamura, M.Y. (1986) Iron-depleted reaction centers from Rhodopseudomonas sphaeroides R-26–1: characterization and reconstitution with Fe2+, Mn2+, Co2+, Ni2+ , Cu2+ and Zn2+ . Biochem. 25, 2276–2287CrossRefGoogle Scholar
  64. 64.
    Kirmaier, C., Holten, D., Debus, R.J., Feher, G. and Okamura, M.Y. (1986) Primary photochemistry of iron-depleted and zinc-reconstituted reaction centers from Rhodopseudomonas sphaeroides. Proc. Natl. Acad. Sci. USA 83, 6407–6411PubMedCrossRefGoogle Scholar
  65. 65.
    Ikegami, I. and Katoh, S. (1973) Studies on chlorophyll fluorescence in chloroplasts. II. Effect of ferricyanide on the induction of fluorescence in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Plant Cell Physiol 14, 829–836Google Scholar
  66. 66.
    Bowes, J.M. and Crofts, A.R. (1980) Binary oscillations in the rate of reoxidation of the primary acceptor of photosystem II. Biochim. Biophys. Acta 590, 373–384PubMedCrossRefGoogle Scholar
  67. 67.
    Petrouleas, V. and Diner, B.A. (1986) Identification of Q400, a high-potential electron acceptor of photosystem II, with the iron of the quinone-iron acceptor complex. Biochim. Biophys. Acta 849, 264–275CrossRefGoogle Scholar
  68. 68.
    Wraight, C.A. (1985) Modulation of herbicide binding by the redox state of Q400, an endogenous component of Photosystem II. Biochim. Biophys. Acta 809, 320–330CrossRefGoogle Scholar
  69. 69.
    Diner, B.A. and Petrouleas, V. (1987) Light-induced oxidation of the acceptor-side Fe(II) of photosystem II by exogenous quinones acting through the QB binding site. II. Blockage by inhibitors and their effects on the Fe(III) EPR spectra. Biochim. Biophys. Acta 893, 138–148CrossRefGoogle Scholar
  70. 70.
    Zimmermann, J.-L. and Rutherford, A.W. (1986) Photoreductant-induced oxidation of Fe2+ in the electron-acceptor complex of photosystem II. Biochim. Biophys. Acta 851, 416–423CrossRefGoogle Scholar
  71. 71.
    Petrouleas, V. and Diner, B.A. (1987) Light-induced oxidation of the acceptor-side Fe(II) of photosystem II by exogenous quinones acting through the QB binding site. I. Quinones, kinetics, and pH-dependence. Biochim. Biophys. Acta 893, 126–137CrossRefGoogle Scholar
  72. 72.
    Govindjee and van Rensen, J.J.S. (1978) Bicarbonate effects on the electron flow in isolated broken chloroplasts. Biochim. Biophys. Acta 505, 183–213PubMedGoogle Scholar
  73. 73.
    Vermaas, W.F.J, and Govindjee (1982) Bicarbonate or carbon dioxide as a requirement for efficient electron transport on the acceptor side of photosystem II. In: Photosynthesis, Vol. II (Govindjee, ed.), pp. 541–558, Academic Press, New YorkGoogle Scholar
  74. 74.
    Vermaas, W.F.J, and Rutherford, A.W. (1984) EPR measurements on the effects of bicarbonate and triazine resistance on the acceptor side of photosystem II. FEBS Lett. 175, 243–248CrossRefGoogle Scholar
  75. 75.
    Radmer, R. and Ollinger, O. (1980) Isotopic composition of photosynthetic O2 flash yields in the presence of H9 18 O and HC 18O FEBS Lett. 110, 57–61Google Scholar
  76. 76.
    Powles, S.B. (1984) Photoinhibition of photosynthesis induced by visible light. Ann. Rev. Plant Physiol. 35, 15–44CrossRefGoogle Scholar
  77. 77.
    Nedbal, L., Setlikova, E., Masojidek, J. and Setlik, I. (1986) The nature of photoinhibition in isolated thylakoids. Biochim. Biophys. Acta 848, 108–119CrossRefGoogle Scholar
  78. 78.
    Kyle, D.J. and Ohad, I. (1986) The mechanism of photoinhibition in higher plants and green algae. In: Photosynthesis III. Encyclopedia of Plant Physiology, New Series, Vol. 19 (L.A. Staehelin and C.J. Arntzen, eds.), pp. 468–475, Springer Verlag, BerlinGoogle Scholar
  79. 79.
    Tytler, E.M., Whitelam, G.C., Hipkins, M.F. and Codd, G.A. (1984) Photoinactivation of photosystem II during photoinhibition in the cyanobacterium Microcystis aeruginosa. Planta 160, 229–234CrossRefGoogle Scholar
  80. 80.
    Demeter, S., Neale, P.J. and Melis, A. (1987) Photoinhibition: impairment of the primary charge separation between P-680 and pheophytin in photosystem II of chloroplasts. FEBS Lett. 214, 370–374CrossRefGoogle Scholar
  81. 81.
    Arntz, B. and Trebst, A. (1986) On the role of the QB protein of PS II in photoinhibition. FEBS Lett. 194, 43–49CrossRefGoogle Scholar
  82. 82.
    Callahan, F.E., Becker, D.W. and Cheniae, G.M. (1986) Studies on the photoactivation of the water-oxidizing enzyme. II. Characterization of weak light photoinhibition of PS II and its light-induced recovery. Plant Physiol. 82, 261–269PubMedCrossRefGoogle Scholar
  83. 83.
    Thompson, L.K. and Brudvig, G.W. (1988) Cytochome b559 may function to protect photosystem II from photoinnibiiton. Biopys. J. 53, 269a.Google Scholar
  84. 84.
    Greenberg, B.M., Gaba, V., Mattoo, A.K. and Edelman, M. (1987) Identification of a primary in vivo degradation product of the rapidly-turning-over 32 kd protein of photosystem II. EMBO J. 6, 2865–2869PubMedGoogle Scholar
  85. 85.
    Rogers, S., Wells, R. and Rechsteiner, M. (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234, 364–368PubMedCrossRefGoogle Scholar
  86. 86.
    Brettel, K., Schlodder, E. and Witt, H.T. (1984) Nanosecond reduction kinetics of photooxidized chlorophyll-aII (P680) in single flashes as a probe for the electron pathway, H+ release and charge accumulation in the O2-evolving complex. Biochim. Biophys. Acta 766, 403–415CrossRefGoogle Scholar
  87. 87.
    O’Malley, P.J. and Babcock, G.T. (1984) EPR properties of immobilized quinone cation radicals and the molecular origin of Signal II in spinach chloroplasts. Biochim. Biophys. Acta 765, 370–379CrossRefGoogle Scholar
  88. 88.
    Babcock, G.T. (1987) The photosynthetic oxygen-evolving process. In: Photosynthesis (J. Amesz, ed.), pp. 125–158, Elsevier, AmsterdamCrossRefGoogle Scholar
  89. 89.
    Velthuys, B.R. and Visser, J.W.M. (1975) The reactivation of EPR signal II in chloroplasts treated with reduced dichlorophenol-indophenol: evidence against a dark equilibrium between two oxidation states of the oxygen evolving system. FEBS Lett. 55, 109–112PubMedCrossRefGoogle Scholar
  90. 90.
    Styring, S. and Rutherford, A.W. (1987) In the oxygen-evolving complex of Photosystem II the S0 state is oxidized to the S1 state by D+ (Signal IIslow). Biochem 26, 2401–2405CrossRefGoogle Scholar
  91. 91.
    De Vitry, C., Carles, C. and Diner, B.A. (1986) Quantitation of plastoquinone-9 in photosystem II reaction center particles. Chemical identification of the primary quinone, electron acceptor QA FEBS Lett. 196, 203–206Google Scholar
  92. 92.
    Takahashi, Y. and Katoh, S. (1986) Numbers and functions of plastoquinone molecules associated with photosystem II preparations from Synechococcus sp. Biochim. Biophys. Acta 848, 183–192CrossRefGoogle Scholar
  93. 93.
    Takahashi, Y., Takahashi, M. and Satoh, K. (1986) Identification of the site of iodide photooxidation in the photosystem II reaction center complex. FEBS Lett. 208, 347–351CrossRefGoogle Scholar
  94. 94.
    Ikeuchi, M. and Inoue, Y. (1987) Specific I labeling of D1 (herbicide-binding protein). An indication that D1 functions on both the donor and acceptor sides of photosystem II. FEBS Lett. 210, 71–76CrossRefGoogle Scholar
  95. 95.
    Barry, B.A. and Babcock, G.T. (1987) Tyrosine radicals are involved in the photosynthetic oxygen-evolving system. Proc. Natl. Acad. Sci. USA 84, 7099–7103PubMedCrossRefGoogle Scholar
  96. 96.
    Debus, R.J., Barry, B.A., Babcock, G.T. and Mcintosh, L. (1988) Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc. Natl. Acad. Sci. USA 85, 427–430PubMedCrossRefGoogle Scholar
  97. 97.
    Vermaas, W.F.J., Rutherford, A.W. and Hansson, O. (1988) Site-directed mutagenesis in Photosystem II of the cyanobacterium Svnechocystis sp. PCC 6083: the donor D is a tyrosine residue in the D2 protein. Proc. Natl. Acad. Sci. USA, in pressGoogle Scholar
  98. 98.
    Porter, R.D. (1986) Transformation in cyanobacteria. Crit. Rev. Micorbiol. 13, 111–132CrossRefGoogle Scholar
  99. 99.
    Joliot, P., Barbieri, G. and Chabaud, R. (1969) Un nouveau modele des centres photochimiques du système II. Photochem. Photobiol. 10, 309–329CrossRefGoogle Scholar
  100. 100.
    Kok, B., Forbush, B. and mcGloin, M. (1970) Cooperation of charges in photosynthetic oxygen evolution. I. A linear four-step model. Photochem. Photobiol. 11, 457–475CrossRefGoogle Scholar
  101. 101.
    Cheniae, G.M. and Martin, I.F. (1970) Sites of function of manganese within photosystem II. Roles in O2 evolution and system II. Biochim. Biophys. Acta 197, 219–239PubMedCrossRefGoogle Scholar
  102. 102.
    Cole, J.L., Yachandra, V.K. , McDermott, A.E., Guiles, R.D., Britt, R.D., Dexheimer, S.L., Sauer, K. and Klein, M.P. (1987) Structure of the manganese complex of photosystem II upon removal of the 33-kilodalton extrinsic protein: an X-ray absorption spectroscopy study. Biochem. 26, 5967–5973CrossRefGoogle Scholar
  103. 103.
    Brudvig, G.W. and Crabtree, R.H. (1986) Mechanism for photosynthetic O2 evolution. Proc. Natl. Acad. Sci. USA 83, 4586–4588PubMedCrossRefGoogle Scholar
  104. 104.
    Dismukes, G.C. (1986) The metal centers of the photosynthetic oxygen-evolving complex. Photochem. Photobiol. 43, 99–115CrossRefGoogle Scholar
  105. 105.
    Homann, P.H. (1987) The relations between the chloride, calcium and polypeptide requirements of photosynthetic water oxidation. J. Bioenerg. Biomembr. 19, 105–123PubMedCrossRefGoogle Scholar
  106. 106.
    Critchley, C. (1985) The role of chloride in photosystem II. Biochim. Biophys. Acta 811, 33–46Google Scholar
  107. 107.
    Ono, T.-A., Nakayama, H., Gleiter, H., Inoue, Y. and Kawamori, A. (1987) Modification of the properties of S2 state in photosynthetic O2-evolving center by replacement of chloride by other anions. Arch. Biochem. Biophys. 256, 618–624PubMedCrossRefGoogle Scholar
  108. 108.
    Boussac, A. and Rutherford, A.W. (1988) Nature of the inhibition of the oxygen evolving enzyme of photosystem II induced by NaCl washing and reversed by the addition of Ca2+ or Sr2+ Biochem. 27, 3476–3483CrossRefGoogle Scholar
  109. 109.
    Ono, T.-A. and Inoue, Y. (1983) Mn-preserving extraction of 33-,24- and 16-kDa proteins from O2-evolving PS II particles by divalent salt-washing. FEBS Lett. 164, 255–260CrossRefGoogle Scholar
  110. 110.
    Miyao, M. and Murata, N. (1985) The Cl- effect on photosynthetic oxygen evolution: interaction of Cl- with 18-kDa, 24-kDa and 33-kDa proteins. FEBS Lett. 180, 303–308CrossRefGoogle Scholar
  111. 111.
    Miller, A.-F., De Paula, J.C. and Brudvig, G.W. (1987) Formation of the S2 state and structure of the Mn complex in photosystem II lacking the extrinsic 33 kilodalton polypeptide. Photosynth. Res. 12, 205–218CrossRefGoogle Scholar
  112. 112.
    Metz, J.G., Pakrasi, H.B., Scibert, M. and Arntzen, C.J. (1986) Evidence for a dual function of the herbicide-binding D1 protein in photosystem II. FEBS Lett. 205, 269–274CrossRefGoogle Scholar
  113. 113.
    Ikeuchi, M., Koike, H. and Inoue, Y. (1988) Iodination of D1 /herbicide-binding protein) is coupled with photooxidation of 125I associated with Cl- -binding site in photosystem II water oxidation system. Biochim. Biophys. Acta 932, 160–169CrossRefGoogle Scholar
  114. 114.
    Dismukes, G.C. (1988) The spectroscopically derived structure of the manganese site for photosynthetic water oxidation and a proposal for the protein-binding sites for calcium and manganese. Chem. Scripta, in pressGoogle Scholar
  115. 115.
    Enami, I., Satoh, K. and Katoh, S. (1987) Crosslinking between the 33 kDa extrinsic protein and the 47 kDa chlorophyll-carrying protein of the PS II reaction center core complex. FEBS Lett. 226, 161–165CrossRefGoogle Scholar
  116. 116.
    Bricker, T.M., Odom, W.R. and Queirolo, C.B. (1988) Close association of the 33 kDa extrinsic protein with the apoprotein of CPal in photosystem II. FEBS Lett. 231, 111–117CrossRefGoogle Scholar
  117. 117.
    Tyagi, A., Hermans, J., Steppuhn, J., Jansson, Ch., Vater, F. and Herrmann, R.G. (1987) Nucleotide sequence of cDNA clones encoding the complete “33 kDa” precursor protein associated with the photosynthetic oxygen-evolving complex from spinach. Molec. Gen. Genet. 207, 288–293Google Scholar
  118. 118.
    Yamagishi, A. and Katoh, S. (1985) Further characterization of the two photosystem II reaction center complex preparations from the thermophilic cyanobacterium Synechococcus sp.. Biochim. Biophys. Acta 807, 74–80CrossRefGoogle Scholar
  119. 119.
    Akabori, K., Tsukamoto, H., Tsukihara, J., Nagatsuka, T., Motokawa, O. and Toyoshima, Y. (1988) Disintegration and reconstitution of photosystem II reaction center core complex. I. Preparation and characterization of three different types of subcomplex. Biochim. Biophys. Acta 932, 345–357CrossRefGoogle Scholar
  120. 120.
    Yamaguchi, N., Takahashi, Y. and Satoh, K. (1988) Isolation and characterization of a photosystem II core complex depleted in the 43 kDa-chlorophyll-binding subunit. Plant Cell Physiol. 29, 123–129Google Scholar
  121. 121.
    Youvan, D.C. and Ismail, S. (1985) Light-harvesting II (B800-B850 complex) structural genes from Rhodopseudomonas capsulata. Proc. Natl. Acad. Sci. USA 82, 58–62PubMedCrossRefGoogle Scholar
  122. 122.
    Zuber, H. (1985) Structure and function of light-harvesting complexes and their polypeptides. Photochem. Photobiol. 42, 821–844CrossRefGoogle Scholar
  123. 123.
    Vermaas, W.F.J., Williams, J.G.K. and Arntzen, C.J. (1987) Sequencing and modification of psbB. the gene encoding the CP-47 protein of photosystem II, in the cyanobacterium Svnechocvstis 6803. Plant Mol. Biol. 8, 317–326CrossRefGoogle Scholar
  124. 124.
    Chisholm, D. and Williams, J.G.K. (1988) Nucleotide sequence of psbC. the gene encoding the CP-43 chlorophyll a-binding protein of photosystem II, in the cyanobacterium Svnechocvstis 6803. Plant Mol. Biol. 10, 293–301CrossRefGoogle Scholar
  125. 125.
    Feick, R.G. and Fuller, R.C. (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochem. 23, 3693–3700CrossRefGoogle Scholar
  126. 126.
    Zuber, H. (1987) Structural principles of the antenna system of photosynthetic organisms. In: Progress in Photosynthesis Research, Vol. II (J. Biggins, ed.), pp. 1–8, Martinus Nijhoff, DordrechtCrossRefGoogle Scholar
  127. 127.
    Blankenship, R.E., Brune, D.C. and Wittmershaus, B.P. (1988) Chlorosome antennas in green photosynthetic bacteria. In: Light energy transduction in photosynthesis: higher plants and bacterial models (D.A. Bryant and S.E. Stevens Jr., eds.), Waverley Press, in pressGoogle Scholar
  128. 128.
    Brune, D.C., King, G.H. and Blankenship, R.E. (1988) Interactions between bacteriochlorophyll c molecules in oligomers and in chlorosomes of green photosynthetic bacteria. In: Photosynthetic Light-harvesting Systems (H. Scheer and S. Schneider, eds.), pp. 141–151, Walter de Gruyter, BerlinGoogle Scholar
  129. 129.
    Wagner-Huber, R., Brunisholz, R.A., Bissig, I., Frank, G. and Zuber, H. (1988) A new possible binding site for bacteriochlorophyll b in a light-harvesting polypeptide of the bacterium Ectorhodospira halochloris. FEBS Lett. 233, 7–11CrossRefGoogle Scholar
  130. 130.
    Tronrud, D.E., Schmid, M.F. and Matthews, B.W. (1986) Structure and X-ray amino acid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9Å resolution. J. Mol. Biol. 188, 443–454PubMedCrossRefGoogle Scholar
  131. 131.
    Barber, J., Chapman, D.J. and Telfer, A. (1987) Characterization of a PS II reaction centre isolated from the chloroplasts of Pisum sativum. FEBS Lett. 220, 67–73CrossRefGoogle Scholar
  132. 132.
    Dzelzkalns, V.A. and Bogorad, L. (1988) Molecular analysis of a mutant defective in photosynthetic oxygen evolution and isolation of a complementing clone by a novel screening procedure. EMBO J. 7, 333–338PubMedGoogle Scholar
  133. 133.
    Boska, M., Yamagishi, A. and Sauer, K. (1986) EPR signal II in cyanobacterial Photosystem II reaction-center complexes with and without the 40 kDa chlorophyll-binding subunit. Biochim. Biophys. Acta 850, 226–233CrossRefGoogle Scholar
  134. 134.
    Cramer, W.A., Theg, S.M. and Widger, W.R. (1986) On the structure and function of cytochrome b-559. Photosynth. Res. 10, 393–403CrossRefGoogle Scholar
  135. 135.
    Pakrasi, H.B., Williams, J.G.K. and Amtzen, C.J. (1988) Targeted mutagenesis of the psbE and psbF genes blocks photosynthetic electron transport: evidence for a functional role of cytochrome b559 in photosystem II. EMBO J. 7, 325–332PubMedGoogle Scholar
  136. 136.
    Hird, S.M., Dyer, TA. and Gray, J.C. (1986) The gene for the 10 kDa phosphoprotein of photosystem II is located in chloroplast DNA. FEBS Lett. 209, 181–186CrossRefGoogle Scholar
  137. 137.
    Cantrell, A. and Bryant, D.A. (1988) Nucleotide sequence of the genes encoding cytochrome b-559 from the cyanelle genome of Cyanophora paradoxa. Photosynth. Res., in pressGoogle Scholar
  138. 138.
    Westhoff, P., Farchaus, J.W. and Herrmann, R.G. (1986) The gene for the Mr 10,000 phosphoprotein associated with photosystem II is part of the psbB Operon of the spinach plastid chromosome. Curr. Genet. 11, 165–169PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Wim Vermaas
    • 1
  1. 1.Department of BotanyArizona State UniversityTempeUSA

Personalised recommendations