Structural and Functional Aspects of the Photosynthetic Electron Transport Chain of Rhodobacter Capsulatus

  • Giovanni Venturoli
  • B. Andrea Melandri
Part of the NATO ASI Series book series (NSSA, volume 168)

Abstract

The electron transfer chain in membrane fragments of non-sulphur purple bacteria (Rhodospiriiiaceae) such as Rhodobacter sphaeroides and Rb. capsulatus is the simplest and best characterized photosynthetic system under study. It consists of only two electron transfer complexes, the photosynthetic reaction center (RC) and the ubiquinol-cyt. cz oxidoreductase, and of two mobile electron carriers, of which one, ubiquinone-10 (UQ) diffuses in the lipid phase of the membrane, and the second, cyt. cz, interacts with the complexes at the water- membrane interface. A cyclic electron transfer takes place in this system, where the two complexes can exchange electrons through the action of the mobile electron carriers (Crofts and Wraight, 1983; Melandri and Venturoli, 1984; Dutton, 1986).

Keywords

Crystallization Recombination Titration Respiration Assure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.P., Feher, G., Yeates, T.O., Komiya, H. and Rees, D.C., 1987a, Structure of the reaction center from Rhodobacter sphaeroidesR-26: The protein subunits, Proc. Natl. Acad. Sei. USA. 84:6162.CrossRefGoogle Scholar
  2. Allen, J.P., Feher, G., Yeates, T.O., Komiya, H. and Rees, D.C., 1987b, Structure of the reaction center from Rhodobacter sphaeroidesR-26: The cofactors, Proc. Natl. Acad. Sci. USA. 84:5730.PubMedCrossRefGoogle Scholar
  3. Baccarini-Melandri, A. and Melandri, B.A., 1977, A role for ubiquinone-10 in the b-cz segment of the photosynthetic bacterial electron transport chain, FEBS Lett., 80:459.PubMedCrossRefGoogle Scholar
  4. Baccarini-Melandri, A., Gabellini, N., Melandri, B.A., Jones, K.R., Rutherford, A.W., Crofts, A.R. and Hurt, E., 1982, Differential extraction and structural specificity of specialized ubiquinone molecules in secondary electron transfer in chromatophores from Rhodopseudomonas sphaeroidesGa, Arch. Biochem. Biophys., 216:566.PubMedCrossRefGoogle Scholar
  5. Crofts, A.R. and Wraight, C.A., 1983, The electrochemical domain of photosynthesis, Biochim. Biophys. Acta. 726:149.Google Scholar
  6. Crofts, A.R., Meinhardt, S.W., Jones, K.R. and Snozzi, M., 1983, The role of the quinone pool in the cyclic electron-transfer Chain Of Rhodopseudomonas sphaeroides. A modified Q-cycle mechanism, Biochim. Biophys. Acta. 723:202.PubMedCrossRefGoogle Scholar
  7. Crofts, A.R., Robinson, H., Andrews, K., Van Doren, S. and Berry, E., 1987, Catalytic sites for reduction and oxidation of quinones, in.: “Cytochrome Systems. Molecular Biology and Bioenergetics”, S. Papa, B. Chance and L. Ernster, eds., Plenum Press, New York and London.Google Scholar
  8. Davidson, E. and Daldal, P., 1987, Primary structure of the bei complex of Rhodopseudomonas capsulata., J. Mol. Biol., 195:13.PubMedCrossRefGoogle Scholar
  9. Deisenhofer, J., Epp, O., Niki, K., Huber, R. and Michel, H., 1985, Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridisat 3Å resolution, Nature. 318:618.PubMedCrossRefGoogle Scholar
  10. Dutton, P.L., 1986, Energy transduction in anoxygenic photosynthesis, in.: “Encyclopedia of Plant Physiology, vol.19. Photosynthesis III”, L.A. Staehelin and C.J. Arntzen, eds., Springer-Verlag, Berlin Heidelberg.Google Scholar
  11. Dutton, P.L. and Prince, R.C., 1978, Reaction-center-driven cytochrome interactions in electron and proton translocation and energy coupling, in.: “The Photosynthetic Bacteria”, R.K. Cayton and W.R. Sistrom, eds., Plenum Press, New York and London.Google Scholar
  12. Fato, R., Battino, M., Degli Esposti, M., Parenti Castelli, G. and Lenaz, G., 1986, Determination of partition and lateral diffusion coefficients of ubiquinone by fluorescence quenching of n-(9-anthroyloxy)stearic acids in phospholipid vesicles and mitochondrial membranes, Biochemistry. 25:3378.PubMedCrossRefGoogle Scholar
  13. Gabellini, N. and Sebald. W., 1986, Nucleotide sequence and transcription of the fbc operon from Rhodepseudomonas sphaeroides, Eur. J. Biochem., 154:569.PubMedCrossRefGoogle Scholar
  14. Garcia, A.F., Venturoli, G., Gadon, N., Fernandez-Velasco, J.G., Melandri, B.A. and Drews, G., 1987, The adaptation of the electron transfer chain of Rhodopseudomonas capsulatato different light intensities, Biochim. Biophys. Acta. 890:335.CrossRefGoogle Scholar
  15. Glaser, E.G. and Crofts, A.R., 1984, A new electrogenic step in the ubiquinol: cyt cz oxidoreductase complex of RhodoPseudomonas sphaeroides, Biochim. Biophys. Acta, 766:322.PubMedCrossRefGoogle Scholar
  16. Glaser, E.G., Meinhardt, S.W. and Crofts, A.R., 1984, Reduction of cyt b561 through the antimycin-sensitive site of the ubiquinol-cyt cz oxidoreductase complex of Rhodopseudomonas spaeroides, FEBS Lett.. 178:336.PubMedCrossRefGoogle Scholar
  17. Gupte, S., Wu, E., Hoechli, M., Jacobson, K., Sowers, A.E. and Hackenbrock, C.R., 1984, Relationship between lateral diffusion, collisional frequency and electron transfer of mitochondrial inner membrane oxidation-reduction components, Proc. Natl. Acad. Sci. USA. 81:2606.PubMedCrossRefGoogle Scholar
  18. Hauska, G., Hurt, E., Gabellini, N. and Lokau, W., 1983. Comparative aspects of quinol-cytochrome c/plasocyanin oxidoreductases, Biochim. Biophys. Acta, 726:97.PubMedGoogle Scholar
  19. Jackson, J.B. and Crofts, A.R., 1971, The kinetics of light induced carotenoid changes in Rhodopseudomonas sphaeroidesand their relation to electrical field generation across the chromatophore membrane, Eur. J. Biochem., 18:120.PubMedCrossRefGoogle Scholar
  20. Jackson, J.B. and Dutton, P.L., 1973, The kinetic and redox Potentiometrie resolution of the carotenoid shifts in Rhodopseudomonas sphaeroideschromatophores: their relationship to electric field alterations in electron transport and energy coupling, Biochim. Biophys. Acta. 325:102.Google Scholar
  21. Kleinfeld, D., Okamura, N.Y. and Peher, G., 1984, Electron transfer in reaction centers of Rhodopseudomonas sphaeroides. I. Determination of the charge recombination pathway ofD+QaQb andfree energy and kinetic relations between QaQb and QaQb, Biochim. Biophys. Acta, 766:126.PubMedCrossRefGoogle Scholar
  22. Kleinfeld, D., Okamura, M.Y. and Feher, G., 1985, Electron transfer in reaction centers of Rhodopseudomonas sphaeroides. II. Free energy and kinetic relations between the acceptor states QAQb aand QaQb, Biochim. Biophys. Acta. 809:291.PubMedCrossRefGoogle Scholar
  23. Link, T.A., Schaegger, H. and Von Jagow, G., 1987, Structural analysis of the bc1complex from beef heart mitochondria by sisded hydropathy plot and by comparison with other bc complexes, in: “Cytochrome Systems. Molecular Biology and Bioenergetics”, S. Papa, B. Chance and L. Ernster, eds., Plenum Press, New York and London.Google Scholar
  24. Meinhard, S.W. and Crofts, A.R., 1983, The role of cytochrome b566 in the electron transfer chain of Rhodopseudomonas sphaeroides, Biochem. Biophys. Acta, 723:219.CrossRefGoogle Scholar
  25. Nelandri, B.A. and Venturoli, G., 1984, Photosynthetic electron transfer, in: “New Comprehensive Biochemistry. Bioenergetics”, L. Ernster, ed., Elsevier, Amsterdam.Google Scholar
  26. Michel, H., Epp, O. and Deisenhofer, J., 1986, Pigment-protein interactions in the photosynthetic reaction center from Rhjodo Pseudomonas viridis, EMBO J., 5:2445.PubMedGoogle Scholar
  27. Mitchell, P., 1976, Possible molecular mechanisms of the protonmotive function of cytochrome systems, J. Theor. Biol., 62:327.PubMedCrossRefGoogle Scholar
  28. Okamura, M.Y., Feher, G. and Nelson, N., 1982, Reaction centers, in: “Photosynthesys, vol.1. Energy Conversion by Plants and Bacteria”, Govindjee, ed., Academic Press, New York.Google Scholar
  29. Rich, P.R., 1986, A perspective on Q-cycles, J. Bioenerg. Biomembr.. 18:145. PubMedCrossRefGoogle Scholar
  30. Rieske, J.S., 1986, Experimental observations on the structure and function of mitochondrial complex III that are unresolved by the protonmotive ubiquinone-cycle hypothesis, J. Bioenerg. Biomembr., 18:235.PubMedCrossRefGoogle Scholar
  31. Robertson, D.E., Giangiacomo, K.M., Moser, C.C. and Dutton, P.L., 1984, Two distinct quinone modulated modes of antimycin-sensitive cytochrome b reduction in the bei complex, FEBS Lett., 178:343.PubMedCrossRefGoogle Scholar
  32. Robertson, D.E., Prince, R.C., Bowyer, J.R., Matsuura, K., Dutton, P.L. and Ohnishi, T., 1984, Thermodynamic properties of the semiquinone and its binding site in the ubiquinol-cytochrome c (cz) oxidoreductase of respiratory and photosynthetic systems, J. Biol. Chem.. 259:1758.PubMedGoogle Scholar
  33. Robertson, D.E., Davidson, E., Prince, R.C., van den Berg, W.H., Marrs, B.L. and Dutton, P.L., 1986, Discrete catalytic sites for quinone in the ubiquinol-cytochrome cz oxidoreductase of Rhodopseudomonas capsulata. Evidence from a mutant defective in ubiquinol oxidation, J. Biol. Chem., 261:584.PubMedGoogle Scholar
  34. Robertson, D.E. and Dutton, P.L., 1987, The redox reaction between cytochrome bu and the semiquinone-quinol couple of Qc is electrogenic in ubiquinol cyt cz oxidoreductase, in: “Cytochrome Systems. Molecular Biology and Bioenergetics”, S. Papa, B. Chance and L. Ernster, eds., Plenum Press, New York and London.Google Scholar
  35. Semenov, A.Yu., Drachev, L.A., Kaminskaya, O.P. and Konstantinov, A.A., 1986, Electrogenic protonation of the secondary quinone acceptor in photosynthetic bacterial chromatophores, in: “European Bioenergetic Conference Reports, Vol.4”. Congress Edition, Prague.Google Scholar
  36. Takaroiya, K. and Dutton, P.L., 1977, The influence of transmembrane potentials on the redox equilibrium between cytochrome cz and the reaction center in Rhodopseudomonas sphaeroideschromatophores, FEBS Lett., 80:279.CrossRefGoogle Scholar
  37. Venturoli, G., Fernandez-Velasco, J.G., Crofts, A.R. and Nelandri, B.A., 1986, Demonstration of a collisional interaction of ubiquinol with the ubiquinol-cytochrome cz oxidoreductase complex in chromatophores from Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta, 851:340.PubMedCrossRefGoogle Scholar
  38. Venturoli, G., Virgili, M., Melandri, B.A. and Crofts, A.R., 1987, Kinetic measurements of electron transfer in coupled chromatophores from photosynthetic bacteria, FEBS Lett., 219:477.PubMedCrossRefGoogle Scholar
  39. Venturoli, G., Fernandez-Velasco, J.G., Crofts, A.R. and Melandri, B.A., 1988, The effect of the size of the quinone pool on the electrogenic reactions in the ubiquinol-cytochrome cz oxidoreductase of Rhodobacter capsulatus. Pool behaviour at the quinone reductase site, Biochim. Biophys. Acta, in press.Google Scholar
  40. de Vries, S., 1986, The pathway of electron transfer in the dimeric QHz:cytochrome c oxidoreductase, J. Bioenerg. Biomembr.. 18:195.PubMedCrossRefGoogle Scholar
  41. Widger, W.R., Cramer, W.A., Herrmann, R.G. and Trebst, A., 1984, Sequence homology and structural similarity between cytochrome b of mitochondrial complex III and the chloroplast b6-f complex: position of the cytochrome b hemes in the membrane, Proc. Natl. Acad. Sci. USA, 81:674.PubMedCrossRefGoogle Scholar
  42. Wikstrom, M.K.F. and Berden, J.A., 1972, Oxidoreduction of cytochrome b in the presence of antimycin, Biochim. Biophys. Acta. 283:403.PubMedCrossRefGoogle Scholar
  43. Wikstrom, M.K.F. and Krab, K., 1986, The semiquinone cycle. A hypothesis of electron transfer and proton translocation in cytochrome bc-type complexes, J. Bioenerg. Biomembr., 18:181.PubMedCrossRefGoogle Scholar
  44. Yeates, T.O., Komiya, H., Rees, D.C., Allen, J.P. and Feher, G., 1987, Structure of the reaction center from Rhodobacter sphaeroidesR-26: Membrane-protein interactions, Proc. Natl. Acad. Sci. USA. 84:6438.PubMedCrossRefGoogle Scholar
  45. Zannoni, D. and Baccarini-Melandri, A., 1980, Respiratory electron flow in facultative photosynthetic bacteria, in: “Diversity of Bacterial Respiratory Systems, vol.11”, C.J. Knowles, ed., CRC Press, Boca Raton, Florida.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Giovanni Venturoli
    • 1
  • B. Andrea Melandri
    • 1
  1. 1.Department of BiologyUniversity of BolognaBolognaItaly

Personalised recommendations