Regulation of Thylakoid Membrane Structure and Function by Surface Electrical Charge

  • J. Barber
Part of the NATO ASI Series book series (NSSA, volume 168)


The thylakoid membrane of chloroplasts has many features which distinguish it from other biological membranes. It contains the molecular machinery, in the form of protein complexes, which is able to intercept light energy and efficiently convert it into chemical potential. It is also characterised by its unusual lipid composition (1). The dominating lipids of this membrane system are the electroneutral species, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) with minor lipids being the negatively charged phosphatidylglycerol and sulpholipid, sulphoquinovosyldiacylgycerol. Despite these difference, however, this chloroplast membrane shares the same common property as other biological membranes in that at physiological pH its surfaces carry excess negative electrical charge. This negative charge seems to be due mainly to carboxyl groups of glutamic and aspartic acid residues of exposed segments of integral membrane proteins with little or no contribution from the head groups of the acidic lipids mentioned above (2). Below pH 4.3 the surface becomes positively charged. The origin of this net positive charge seems to result from the guanidine group of exposed arginine residues (3).


Chlorophyll Fluorescence Thylakoid Membrane Monovalent Cation Space Charge Density Diffuse Double Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Gounaris and J. Barber, Trends in Biochem. Sci. 8:378–381 (1983)CrossRefGoogle Scholar
  2. 2.
    H.Y. Nakatani, J. Barber and J.A. Forrester, Biochim. Biophys. Acta 504:215–225 (1978)PubMedCrossRefGoogle Scholar
  3. 3.
    H.Y. Nakatani and J. Barber, Biochim. Biophys. Acta 591:82–91 (1980)PubMedCrossRefGoogle Scholar
  4. 4.
    M. Gouy, J. Phys. (Paris) 9:457–468 (1910)Google Scholar
  5. 5.
    D.L. Chapman, Phil. Mag. 25:475–481 (1913)Google Scholar
  6. 6.
    B.T. Rubin and J. Barber, Biochim. Biophys. Acta 592:87–102 (1980)PubMedCrossRefGoogle Scholar
  7. 7.
    J. Barber, Biochim. Biophys. Acta 594:253–308 (1980)PubMedGoogle Scholar
  8. 8.
    J. Barber, Ann. Rev. Plant Physiol. 33:261–295 (1982)CrossRefGoogle Scholar
  9. 9.
    V.A. Parsegian and B.W. Ninham, J. Theor. Biol. 38:101–109 (1973)PubMedCrossRefGoogle Scholar
  10. 10.
    J.Th.G. Overbeek, J. Colloid Interface Sci. 58:408–422 (1978)CrossRefGoogle Scholar
  11. 11.
    E.L. Gross and S.C. Hess, Biochim. Biophys. Acta 339:334–346 (1974)PubMedCrossRefGoogle Scholar
  12. 12.
    E.L. Gross and S.H. Prasher, Arch. Biochem. Biophys. 164:460–468 (1974)PubMedCrossRefGoogle Scholar
  13. 13.
    C. Scoufflaire, R. Lannoye and J. Barber, Photosyn. Res. 6:133–146 (1985)CrossRefGoogle Scholar
  14. 14.
    J.D. Mills and J. Barber, Biophys. J. 21:257–272 (1978)PubMedCrossRefGoogle Scholar
  15. 15.
    J. Barber and G.F.W. Searle, FEBS Lett. 92:5–8 (1978)CrossRefGoogle Scholar
  16. 16.
    H.Y. Nakatani, J. Barber and M. Minski, Biochim. Biophys. Acta 545:24–35 (1979)PubMedCrossRefGoogle Scholar
  17. 17.
    W.S. Chow and J. Barber, J. Biochem. Biophys. Meth. 3:173–185 (1980)PubMedCrossRefGoogle Scholar
  18. 18.
    J. Barber and G.F.W. Searle, FEBS Lett. 103:241–245 (1979)CrossRefGoogle Scholar
  19. 19.
    M.J. Sculley, J.T. Duniec, S.W. Thome, W.S. Chow and N.K. Boardman, N.K. Arch. Biochem. Biophys. 201:339–346 (1980)CrossRefGoogle Scholar
  20. 20.
    B.T. Rubin, W.S. Chow and J. Barber, Biochim. Biophys. Acta 634:174–190 (1981)PubMedCrossRefGoogle Scholar
  21. 21.
    J. Barber, FEBS Lett. 118:1–10 (1980)CrossRefGoogle Scholar
  22. 22.
    N.K. Boardman and J. Anderson, Nature (London) 203:166–167 (1964)CrossRefGoogle Scholar
  23. 23.
    B. Andersson, in: Methods in Enzymology, A. Weisbach and H. Weisbach, eds., Academic Press, New York (1986)Google Scholar
  24. 24.
    R.C. Ford, D.J. Chapman, J. Barber, J.Z. Pedersen and R.P. Cox, Biochim. Biophys. Acta 681:145–151 (1982)CrossRefGoogle Scholar
  25. 25.
    W. Kuehlbrandt, Nature (London) 307:478–480 (1984)CrossRefGoogle Scholar
  26. 26.
    J. Barber, W.S. Chow, C. Scoufflaire and R. Lannoye, Biochim. Biophys. Acta 591:92–103 (1980)PubMedCrossRefGoogle Scholar
  27. 27.
    L.A. Staehelin, J. Cell Biol. 71:136–158 (1976)PubMedCrossRefGoogle Scholar
  28. 28.
    J. Barber, Plant, Cell and Environment 6:311–312 (1983)CrossRefGoogle Scholar
  29. 29.
    D.J. Chapman, J. DeFelice and J. Barber, Photosyn. Res. 9:239–249 (1986)CrossRefGoogle Scholar
  30. 30.
    J. Barber, Photobiochem. Photobiophys. 5:181–190 (1983)Google Scholar
  31. 31.
    J. Bennett, Biochem. J. 212:1–13 (1983)PubMedGoogle Scholar
  32. 32.
    P. Horton, FEBS Lett. 152:47–52 (1983)CrossRefGoogle Scholar
  33. 33.
    J.F. Allen, Trends Biochem. Sci. 8:369–373 (1983)CrossRefGoogle Scholar
  34. 34.
    J.F. Allen, J. Bennett, K.E. Steinback and C.J. Arntzen, Nature 291:21–25 (1981)CrossRefGoogle Scholar
  35. 35.
    P. Horton and M.T. Black, FEBS Lett. 119:141–144 (1980)CrossRefGoogle Scholar
  36. 36.
    A. Telfer and J. Barber, FEBS Lett. 129:161–165 (1981)CrossRefGoogle Scholar
  37. 37.
    A. Telfer, J.F. Allen, J. Barber and J. Bennett, Biochim. Biophys. Acta 722:176–181 (1983)CrossRefGoogle Scholar
  38. 38.
    O. Canaani, J. Barber and S. Maikin, Proc. Natl. Acad. Sci. USA, 81:1614–1618 (1984)PubMedCrossRefGoogle Scholar
  39. 39.
    J. Barber In: Encyclopedia of Plant Physiology, New Series. L.A. Staehelin and J. Arntzen, eds., Springer Verlag, Berlin, 19:653–664 (1986)Google Scholar
  40. 40.
    D.J. Kyle, L.A. Staehelin and C.J. Arntzen, Arch. Biochem. Biophys. 222:527–541 1983PubMedCrossRefGoogle Scholar
  41. 41.
    W.S. Chow, A. Telfer, D.J. Chapman and J. Barber, Biochim. Biophys. Acta 38:60–68 (1981)Google Scholar
  42. 42.
    B. Andersson, H.-E. Akerlund, B. Jergil and C. Larsson. FEBS Lett. 149:181–185 1982)CrossRefGoogle Scholar
  43. 43.
    J.N. Farchaus, W.R. Widger, W.A. Cramer and R.A. Dilley, Arch. Biochem. Biophys. 17:362–367 (1982)CrossRefGoogle Scholar
  44. 44.
    A. Telfer, J. Whitelegge, H. Bottin and J. Barber, J. Chem. Soc. Faraday Trans. 2 Special Edition) 82:2207–2215 (1986)CrossRefGoogle Scholar
  45. 45.
    A. Telfer, M. Hodges and J. Barber, Biochim. Biophys. Acta 724:167–175 (1983)CrossRefGoogle Scholar
  46. 46.
    A. Telfer, M. Hodges, P.A. Millner and J. Barber, Biochim. Biophys. Acta 66:554–562 (1984)Google Scholar
  47. 47.
    K. Gounaris, A.P.R. Brain, P.J. Quinn and W.P. Williams. Biochim. Biophys. Acta 66:198–208 (1984)Google Scholar
  48. 48.
    C. Sundby and B. Andersson, FEBS Lett. 191:24–28 (1985)CrossRefGoogle Scholar
  49. 49.
    J. Barber, Trends Biochem. Sci. 12:321–326 (1987)CrossRefGoogle Scholar
  50. 50.
    D.J. Kyle and I. Ohad, in: Encyclopedia of Plant Physiol. (New Series) L.A. taehelin and C.J. Arntzen, eds., Springer Verlag, Berlin 19, 468–476 (1986).Google Scholar
  51. 51.
    A.K. Mattoo and M. Edelman, Proc. Natl. Acad. Sci. USA, 84:1497–1501 (1987)PubMedCrossRefGoogle Scholar
  52. 52.
    A. Telfer, J.B. Marder and J. Barber, Biochim. Biophys. Acta 893:557–563 (1987)CrossRefGoogle Scholar
  53. 53.
    J.B. Marder, A. Telfer and J. Barber, Biochim. Biophys. Acta 932:362–365 (1988)CrossRefGoogle Scholar
  54. 54.
    R.C. Ford and J. Barber, Photobiochem. Photobiophys. 1:263–270 (1981)Google Scholar
  55. 55.
    R.C. Ford and J. Barber, Biochim. Biophys. Acta 722:341–348 (1983)CrossRefGoogle Scholar
  56. 56.
    P.A. Millner, R.A.C. Mitchell, D.J. Chapman and J. Barber, Photosyn. Res. 5:63–76 1984)CrossRefGoogle Scholar
  57. 57.
    J. Barber, R.C. Ford, R.A.C Mitchell and P.A. Millner, Planta 161:375–380 (1984)CrossRefGoogle Scholar
  58. 58.
    B.T. Rubin, J. Barber, G. Paillotin, W.S. Chow and Y. Yamamoto, Biochim. Biophys. cta 683:69–74 (1981)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J. Barber
    • 1
  1. 1.AFRC Photosynthesis Research Group, Biology DepartmentImperial College LondonUK

Personalised recommendations