Advertisement

Infrared Spectroscopy and Electrochemistry of Chlorophylls: Model Compound Studies on the Interaction in Their Native Environment

  • M. Leonhard
  • A. Wollenweber
  • G. Berger
  • J. Kléo
  • E. Nabedryk
  • J. Breton
  • W. Mäntele
Part of the NATO ASI Series book series (NSSA, volume 168)

Abstract

In the primary reactions of photosynthesis, the light-induced charge separation and stabilization involves the generation of a radical cation and of radical anions at the various steps of electron transfer. The basic units that can perform these processes — called photosynthetic reaction centers (RC) — are well-characterized for bacterial photosynthesis in their structure1,2 and function (for a review, see Parson3). In bacterial RC, the primary electron donor (P) is a bacteriochlorophyll (BChl) a or b dimer and the first electron acceptor a bacteriopheophytin (BPheo) a or b molecule. They are embedded in the protein matrix and provided with very specific interactions that seem to be responsible for the spectral and redox properties of the pigments in their native environment as well as for the efficiency and specificity of electron transfer. X-ray structure analysis1 has demonstrated the close proximity of protein residues to carbonyl groups of the pigments, thus suggesting H-bonding.

Keywords

Full Line Bond Order Cation Formation Photosynthetic Reaction Center Primary Electron Donor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Dörnemann and H. Senger, The structure of Chlorophyll RC I, a chromophore of the reaction center of photosystem I, Photochem. Photobiol. 43: 573 (1986).CrossRefGoogle Scholar
  2. 2.
    H. Scheer, E. Groß, B. Nitsche, E. Cmiel, S. Schneider, W. Schäfer, H.-M. Schiebel, and H.-R. Schulten, The Structure of Methylpheophor-bide RC I. Photochem. Photobiol. 43: 559 (1986).CrossRefGoogle Scholar
  3. 3.
    M. Senge, D. Dörnemann, and H. Senger, The chlorinated chlorophyll RC I, a preparation artefact, FEBS Lett. 234: 215 (1988).CrossRefGoogle Scholar
  4. 4.
    M. Senge and H. Senger, Chlorination of Chlorophyll in vitro, Photochem. Photobiol., in press (1988).Google Scholar
  5. 5.
    R. D. Woodward and V. Scarric, A New Aspect of the Chemistry of Chlorins, J. Am. Chem. Soc. 83: 4676 (1961).CrossRefGoogle Scholar
  6. 6.
    P. H. Hynninen and S. Lötjönen, Electrophilic Substitution at the δ- Methine Bridge of Pheophorbide a and a’, Tetrahedron Lett. 22: 1845 (1981).CrossRefGoogle Scholar
  7. 7.
    L. P. Hager, D. R. Morris, F. S. Brown, and H. Eberwein, Chloroperoxidase II. Utilization of Halogen Anions, J. Biol. Chem. 241: 1769 (1966).PubMedGoogle Scholar
  8. 8.
    S. Lötjönen and P. H. Hynninen, An improved method for the preparation of (10R)- and (10S)-pheophytins a and b, Synthesis: 708 (1983).Google Scholar
  9. 9.
    M. Senge, A. Struck, D. Dörnemann, H. Scheer, and H. Senger, Hydroxylation of Chlorinated and Unchlorinated Chlorophylls in. vitro. Z Naturforsch. 43c: in press (1988).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • M. Leonhard
    • 1
  • A. Wollenweber
    • 1
  • G. Berger
    • 2
  • J. Kléo
    • 2
  • E. Nabedryk
    • 2
  • J. Breton
    • 2
  • W. Mäntele
    • 1
  1. 1.Institut für Biophysik und StrahlenbiologieUniversität FreiburgFreiburgGermany
  2. 2.Service de Biophysique, Département de BiologieCEN SaclayGif-sur-Yvette CédexFrance

Personalised recommendations