Non-Linear Operation of CO2 Lasers with Intracavity Saturable Absorbers

  • Ennio Arimondo
Part of the NATO ASI Series book series (NSSB, volume 116)


The laser operation is an important case of a non-linear system and a large effort of the quantum optics has been devoted to the interpretation of the non-linear features, also from the point of view of specific applications. In a simple system the non-linearities are in the response of the amplifying medium. In a laser with an intracavity saturable absorber, where the non-linear response of the absorber is present, new phenomena occur. The behaviour of a laser containing an intracavity saturable absorber was investigated initially a long time ago (1). However recently a large interest in the phenomena arose owing to the observation of optical bistability and owing to the development of precise theoretical models. In the experiments involving the operation of an infrared CO2 laser containing a saturable molecular absorber, it is quite easy to realize a single frequency operations. Thus the analysis presented here will be restricted to this case, and the laser instabilities produced by mode or frequency competition will be not considered. The experimental apparatus, the experimental results and a theoretical analysis will be presented.


Saturable Absorber Optical Bistability Resonant Level Absorber Medium Single Frequency Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O.R. Wood and S.E. Schwarz, Appl. Phys. Lett. 11 88 – 89 (1967)ADSCrossRefGoogle Scholar
  2. 2.
    E. Arimondo, F. Casagrande, L. Lugiato and P. Glorieux, Appl. Phys. B30 57 – 77 (1983)ADSGoogle Scholar
  3. 3.
    J. Dupre, F. Meyer, C. Meyer, Rev. Phys. Appl. (Paris) 10 285 – 293 (1975)CrossRefGoogle Scholar
  4. 4.
    J.C. Antoranz, J. Gea and M.G. Velarde, Phys. Rev. Lett. 47 1895 – 8 (1981);ADSCrossRefGoogle Scholar
  5. 4a.
    J.C. Antoranz, L.L. Bonilla, J. Gea and M.G. Velarde, Phys. Rev. Lett. 49 35 – 8 (1982)ADSCrossRefGoogle Scholar
  6. 5.
    E. Arimondo and B.M. Dinelli, Optics Comm. 44 277 – 282 (1983)ADSCrossRefGoogle Scholar
  7. 6.
    L.A. Lugiato, P. Mandel, S.T. Dembinski and A. Kossakowski, Phys. Rev. A18 238 – 254 (1978)ADSGoogle Scholar
  8. 7.
    R. Salomaa and S. Stenholm, Phys. Rev. A8 2695 – 2711 (1973)ADSGoogle Scholar
  9. 8.
    Yu.V. Brzhazovskii, L.S. Vasilenko, S.G. Rautian, G.S. Popova and V.P. Chebotayev, Soviet Physics JETP 34 265 – 270 (1972)ADSGoogle Scholar
  10. 9.
    S.T. Dembinski, A. Kossakowski, L.A. Lugiato, P. Mandel, P. Peplowski, Phys. Lett. 68A 20–2 (1978)MathSciNetADSGoogle Scholar
  11. 9a.
    F. Mrugala and P. Peplowski, Z. Phys. B 38 359 – 364 (1980)MathSciNetADSCrossRefGoogle Scholar
  12. 10.
    T. Erneux and P. Mandel, Z. Phys. B 44 353–63, 365 – 374 (1981)MathSciNetADSCrossRefGoogle Scholar
  13. 11.
    A. Jacques and P. Glorieux, Opt. Commun. 40 455 – 460 (1982)ADSCrossRefGoogle Scholar
  14. 12.
    M.L. Asquini and F. Casagrande, Nuovo Cimento D, in pressGoogle Scholar
  15. 13.
    H.J. Carmichael, Optica Acta 27 147 (1980)CrossRefGoogle Scholar
  16. 13a.
    J.A. Hermann, Optica Acta 27 159–70 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ennio Arimondo
    • 1
  1. 1.Istituto di Fisica SperimentaleUniversitá di Napoli and Gruppo Nazionale Struttura della MateriaPisaItaly

Personalised recommendations