Laser with Intracavity Absorber: Q-Switching, Multistable Nonlinear Oscillations and Chaos

  • M. G. Velarde
  • J. C. Antoranz
Part of the NATO ASI Series book series (NSSB, volume 116)


The laser problem refers to a highly simplified mathematical model obtained from a more refined description given by LUGIATO et al. |1, 2|. We have
$$dE/drt = - K + NV + \mathop N\limits^ - \mathop V\limits^ - $$
$$dV/dt - \mathop {{\gamma _ \bot }}\limits^ - V + |g{|^2}DE$$
$$d\mathop V\limits^ - /dt = - \mathop {{\gamma _ \bot }}\limits^ - \mathop v\limits^ - |g{|^2}\mathop D\limits^ - E$$
$$dD/dt = - {\gamma _{||}}D - 4VE + {\gamma _{||}}\sigma $$
$$d\mathop D\limits^ - /dt = - \mathop {{\gamma _{||}}}\limits^ - - 4\mathop V\limits^ - E + \mathop {{\gamma _{||}}}\limits^ - \mathop \sigma \limits^ - $$
where N is the number of two-level excitable (active)atoms. E is the electric field amplitude. V is the polarization of the atoms. D is the perturbed atomic inversion (population inversion) . g is the field-matter (active or passive) coupling constant, κ is the damping constant of the field in the cavity . σ is the unsaturated inversion. γll and γl are the longitudinal and transverse relaxation constants, respectively (their inverse are a measure of the population and dipole decay times, respectively), the bar over a quantity indicates the corresponding variable for the passive atoms (absorbing medium).


Fractal Dimension Lyapunov Exponent Strange Attractor Electric Field Amplitude Atomic Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.A. Lugiato, P. Mandel, S.T. Dembinski and A. Kossakowski , Phys. Rev. A 18 (1978), 238.ADSCrossRefGoogle Scholar
  2. 2.
    V. Degiorgio and L.A. Lugiato, Phys. Lett. A 77(1980), 167.ADSCrossRefGoogle Scholar
  3. 3.
    J.C. Antoranz and M.G. Velarde, Optics Commun. 38 (1981), 61.ADSCrossRefGoogle Scholar
  4. 4.
    M.G. Velarde, in Nonlinear Phenomena at Phase Transitions and Instabilities (T. Riste, editor), Plenum Press, New York, 1981.Google Scholar
  5. 5.
    H. Knapp, H. Risken and H.D. Wollmer, Appl. Phys. 15 (1978), 265.ADSCrossRefGoogle Scholar
  6. 6.
    M.G. Velarde and J.C. Antoranz, Phys. Lett. A 80 (1980), 220.MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    G. loss and D.D. Joseph, Elementary Stability and Bifurcation Theory, Springer-Verlag, New York, 1980 (Chapters V and VII).Google Scholar
  8. 8.
    L.L. Bonilla and M.G. Velarde, J. Math. Phys. 20 (1979), 2692.MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    J.C. Antoranz, L.L. Bonilla, J. Gea and M.G. Velarde, Phys. Rev. Lett. 49 (1982), 35.ADSCrossRefGoogle Scholar
  10. 10.
    H. Kielhöfer, Arch. Rat. Mech. Anal. 69 (1979), 53MATHCrossRefGoogle Scholar
  11. 11.
    T. Erneux and P. Mandel, Z. Phys. B 44(1981), 353.MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    S.T. Dembinski, A Kossakowski, P. Pepløwski, L.A. Lugiato and P. Mandel, Phys. Lett. A 68 (1978), 20.MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    I. Shimada and T. Nagashima, Prog. Theor. Phys. 61 (1979), 1605.MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    P. Frederickson, J.L. Kaplan and J.A. Yorke, preprint .Google Scholar
  15. 15.
    H. Mori, Prog. Theor. Phys. 63 (1980), 1044.ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • M. G. Velarde
    • 1
  • J. C. Antoranz
    • 1
  1. 1.Departamento de Física FundamentalU.N.E.D.MadridSpain

Personalised recommendations