Optical Bistability and Related Topics

  • L. A. Lugiato
  • L. M. Narducci
Part of the NATO ASI Series book series (NSSB, volume 116)


The last decade has witnessed a rapidly growing interest for the general subject of cooperative phenomena in nonequilibrium systems 1,2. The discovery that such dynamical fireworks as period doubling bifurcations and chaos give evidence of universal features 3,4 has stimulated extensive studies and produced encouraging advances. It is generally known that Quantum Optics has played a major role in the development of Synergetics 1. Optics Bistability, in particular, has been a center of attraction because of its rich phenomenology and potential usefulness in technological applications. Actually, the field of quantum optics has uncovered more than one system capable of bistable behavior, such as, for example, the laser with a saturable absorber5,8. However, the term optical bistability is now commonly used to identify a very specific system; as such, this will be the focus of our attention.


Ring Cavity Instability Region Period Doubling Bifurcation Incident Field Optical Bistability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Haken, Synergetics — An Introduction, Springer-Verlag, Berlin, 1977.MATHGoogle Scholar
  2. 2.
    G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations, Wiley and Sons, NY 1977.Google Scholar
  3. 3.
    S. Grossman and J. Thomae, Z. Naturforsch. 32a, 1353 (1977).ADSGoogle Scholar
  4. 4.
    M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 4a.
    M.J. Feigenbaum, J. Stat. Phys. 21, 669 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 5.
    L.A. Lugiato, P. Mandel, S.T. Dembinski, and A. Kossakowski, Phys. Rev. A18, 238 (1978).ADSGoogle Scholar
  7. 6.
    J.C. Antoranz, J. Gea, M. Velarde, Phys. Rev. Lett. 47, 1895 (1981);ADSCrossRefGoogle Scholar
  8. J.C. Antoranz, L.L. Bonilla, J. Gea, M. Velarde, Phys. Rev. Lett. 49, 35 (1982).ADSCrossRefGoogle Scholar
  9. 7.
    T. Erneux and P. Mandel, Z. Physik 44B, 353 365 (1982).MathSciNetADSGoogle Scholar
  10. 8.
    E. Arimondo, F. Casagrande, L.A. Lugiato and P. Glorieux, Appl. Phys. 30B, 57 (1983).ADSGoogle Scholar
  11. 9.
    A. Szöke, V. Daneu, J. Goldhar and N.A. Kurnit, Appl. Phys. Lett. 15, 376 (1969).ADSCrossRefGoogle Scholar
  12. 10.
    H.M. Gibbs, S.L. McCall and T.N.C. Venkatesan, Phys. Rev. Lett. 36, 113 (1976).ADSCrossRefGoogle Scholar
  13. 11.
    R. Bonifacio and L.A. Lugiato, Opt. Comm. 19, 172 (1976).ADSCrossRefGoogle Scholar
  14. 12.
    H.M. Gibbs, S.L. McCall and T.N.C. Venkatesan, Opt. Eng. 19, 463 (1980).ADSGoogle Scholar
  15. 13.
    E. Abraham, S.D. Smith, Rept. Progr. Phys. 45, 815 (1982).ADSCrossRefGoogle Scholar
  16. 14.
    F.T. Arecchi and P. Salieri, Physics Bull. 33, 20 (1982).Google Scholar
  17. 15.
    L.A. Lugiato, in Progress in Optics, Vol. XXI, edited by E. Wolf, North-Holland (in press).Google Scholar
  18. 16.
    L.A. Lugiato, Contemporary Physics (in press).Google Scholar
  19. 17.
    R. Bonifacio, Editor, Dissipative Systems in Quantum Optics: Resonance Fluorescence, Optical Bistability, Superfluorescence, Springer-Verlag, Berlin (1982).Google Scholar
  20. 18.
    H.M. Gibbs, S.L. McCall, T.N.C. Venkatesan, A.C. Gossard, A. Passner, and W. Wiegmann, Appl. Phys. Lett. 35, 451 (1979);ADSCrossRefGoogle Scholar
  21. 18a.
    S.S. Tarng, K. Tai, J.L. Jewell, H.M. Gibbs, A.C. Gossard, S.L. McCall, A. Passner, T.N.C. Venkatesan, and W. Weigmann, Appl. Phys. Lett. 40, 205 (1982).ADSCrossRefGoogle Scholar
  22. 19.
    D.A.B. Miller, S.D. Smith, C.T. Seaton, IEEE J. Quant. Elect. QE17, 312 (1981).ADSCrossRefGoogle Scholar
  23. 20.
    H.M. Gibbs, S.S. Tarng, J.L. Jewell, D.A. Weinberger, K.C. Tai, A.C. Gossard, S.L. McCall, A. Passner and W. Wiegmann, Appl. Phys. Lett. 41, 221 (1982).ADSCrossRefGoogle Scholar
  24. 21.
    S.D. Smith, Topical Meeting on Optical Bistability, Rochester (1981).Google Scholar
  25. 22.
    L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms, Wiley and Sons, NY 1975.Google Scholar
  26. 23.
    R. Bonifacio and L.A. Lugiato, Lett. al. Nuovo Cimento, 21, 505 (1978).CrossRefGoogle Scholar
  27. 24.
    F.S. Felber and J.H. Marburger, Appl. Phys. Lett. 28, 731 (1976).ADSCrossRefGoogle Scholar
  28. 25.
    K. Ikeda and O. Akimoto, Phys. Rev. Lett. 45, 709 (1980).ADSCrossRefGoogle Scholar
  29. 26.
    L.A. Lugiato, L.M. Narducci, D.K. Bandy and C.A. Pennise, Opt. Comm. 43, 281 (1982).ADSCrossRefGoogle Scholar
  30. 27.
    M. Gronchi, V. Benza, L.A. Lugiato, P. Meystre and M. Sargent III, Phys. Rev. A24, 1419 (1981).ADSGoogle Scholar
  31. 28.
    R. Bonifacio and L.A. Lugiato, Lett. al Nuovo Cimento 21, 510 (1978).CrossRefGoogle Scholar
  32. 29.
    L.A. Lugiato, V. Benza, L.M. Narducci and J.D. Farina, Zeit. Phys. B49, 351 (1983).ADSGoogle Scholar
  33. 30.
    H. Haken, Zeit. Phys. B21, 105 (1975);ADSGoogle Scholar
  34. 31.
    H. Haken, Zeit. Phys. ibid. B22, 69 (1975)ADSGoogle Scholar
  35. 31.
    J.E. Marsden and M. McCracken, The Hopf Bifurcation and its Applications, Springer-Verlag, Berlin (1976).MATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • L. A. Lugiato
    • 1
  • L. M. Narducci
    • 2
  1. 1.Dipartamento di FísicaUniversity di MilanoMilanoItaly
  2. 2.Physics DepartmentDrexel UniversityPhiladelphiaUSA

Personalised recommendations