Stochastic Space-Time Problems

  • Ludwig Arnold
  • Peter Kotelenez
Part of the NATO ASI Series book series (NSSB, volume 116)


As an example let us look at the following reaction scheme in a d-dimensional reactor sitting on Ω ⊂ Rd with volume V:


Wiener Process Mild Solution Stochastic Partial Differential Equation Flux Boundary Condition Stochastic Evolution Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adams, R. A.: Sobolev spaces. Academic Press, New York 1975MATHGoogle Scholar
  2. [2]
    Arnold, L.: Mathematical Models of chemical reactions In: Hazewinkel, M.; Willems, J. (eds.): Stochastic Systems. Reidel, Dordrecht 1981Google Scholar
  3. [3]
    Arnold, L.; Theodosopulu, M.: Deterministic limit of the stochastic model of chemical reactions with diffusion. Adv. Appl. Prob. 12 (1980), 367–379MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Balakrishnan, A. V.: Applied Functional Analysis. Springer, Berlin 1976MATHGoogle Scholar
  5. [5]
    Billingsley, P.: Convergence of probability measures. Wiley, New York 1968MATHGoogle Scholar
  6. [6]
    Curtain, R.; Pritchard, A. J.: Infinite dimensional linear system theory. Springer, Berlin 1978CrossRefGoogle Scholar
  7. [7]
    Da Prato, G.: Some results on linear stochastic evolution equations in Hilbert space by the Semigroups method. Stochastic Analysis and Appl. 1 (1983), 57–88MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Dawson, D.: Stochastic evolution equations and related measure processes. J. Multivariate Anal. 5 (1975), 1–52MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Gihman, I. I.; Skorohod, A. V.: The theory of stochastic processes, Vol. II. Springer, Berlin 1975Google Scholar
  10. [10]
    Haken, H.: Synergetics. Springer, Berlin 1978MATHCrossRefGoogle Scholar
  11. [11]
    Haken, H.: Advanced Synergetics. Springer, Berlin 1983MATHGoogle Scholar
  12. [12]
    Kotelenez, P.: Law of large numbers and central limit theorem for chemical reactions with diffusion. PhD Thesis Bremen 1982Google Scholar
  13. [13]
    Kotelenez, P.: A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations. Report 102 (1983), Universität BremenGoogle Scholar
  14. [14]
    Krylov, N. B.; Rozowskij, B. L.: On stochastic evolution equations. Itogi Nauki i Tehniki, Ser. Sov. Probl. Math. no. 14 (1979), 71–146 (in Russian)Google Scholar
  15. [15]
    Kuiper, H. J.: Existence and comparison theorems for nonlinear diffusion systems. J. Math. Anal. Appl. 60 (1977), 166–181MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Kuo, H.-H.: Gaussian measures in Banach spaces. Springer, Berlin 1975MATHGoogle Scholar
  17. [17]
    Metivier, M.; Pellaumail, J.: Stochastic integration. Academic Press, New York 1980MATHGoogle Scholar
  18. [18]
    Nicolis, G.; Prigogine, I.: Self-organization in nonequilibrium systems. Wiley, New York 1977MATHGoogle Scholar
  19. [19]
    Pardoux, E.: Equation aux derivées partielles stochastiques nonlinéaires monotones. Etude de solutions fortes de type Itó. Thése doct. Sci. math. Univ. Paris Sud 1975Google Scholar
  20. [20]
    Van Kampen, N. G.: Stochastic processes in physics and chemistry. North Holland, Amsterdam 1981MATHGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ludwig Arnold
    • 1
  • Peter Kotelenez
    • 1
  1. 1.Fachbereich Mathematik, UniversitätBremen 33West Germany

Personalised recommendations