Advertisement

Deterministic Diffusion — A Quality of Chaos

  • T. Geisel
Part of the NATO ASI Series book series (NSSB, volume 116)

Abstract

This paper reports on chaotic systems that can exhibit a deterministic “random” walk as an additional chaotic quality. This diffusive motion is generated within the dynamical system and not by external random forces. It is governed by a master equation, which is derived from an exact equation. The onset of diffusion is analogous to a phase transition and is described by a universal scaling function. Under certain circumstances the power spectra show excess noise at low frequencies and the mean-square displacements have an anomalous asymptotic behavior. In 2-dimensional systems there is a crossover in the critical behavior at the onset of diffusion.

Keywords

Power Spectrum Master Equation Excess Noise Diffusive Motion Invariant Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.M. May, Nature 261, 459 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978) andMathSciNetADSMATHCrossRefGoogle Scholar
  3. 2a.
    M.J. Feigenbaum, J. Stat. Phys. 21, 669 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 3.
    T. Geisel and J. Nierwetberg, Phys. Rev. Letters 47, 975 (1981).MathSciNetADSCrossRefGoogle Scholar
  5. 4.
    P. Manneville and Y. Pomeau, Phys. Letters 75A, 1 (1979) andMathSciNetADSGoogle Scholar
  6. 4a.
    P. Manneville and Y. Pomeau, Physica 1D, 219 (1980).MathSciNetADSGoogle Scholar
  7. 5.
    J.E. Hirsch, B.A. Huberman and D.J. Scalapino, Phys. Rev. A 25, 519 (1982).ADSGoogle Scholar
  8. 6.
    J.-P. Eckmann, L. Thomas and P. Wittwer, J. Phys. A 14, 3153 (1981).MathSciNetADSGoogle Scholar
  9. 7.
    see e.g. R. Shaw, Z. Naturforschung 36a, 80 (1981).ADSGoogle Scholar
  10. 8.
    T. Geisel and J. Nierwetberg, Phys. Rev. Letters 48, 7 (1982).MathSciNetADSCrossRefGoogle Scholar
  11. 9.
    B.A. Huberman, J.P. Crutchfield and N.H. Packard, Appl. Phys. Letters 37, 750 (1980).ADSCrossRefGoogle Scholar
  12. 10.
    A. Reithmayer, Diploma thesis, Universität Regensburg 1982.Google Scholar
  13. 11.
    S. Grossmann and S. Thomae, Z. Naturforschung 32a, 1353 (1977).MathSciNetADSGoogle Scholar
  14. 12.
    H. Haken and G. Mayer-Kress, Z. Phys. B43, 185 (1981).MathSciNetADSCrossRefGoogle Scholar
  15. 13.
    A. Lasota and J.A. Yorke, Trans. Am. Math. Soc. 186, 481 (1973).MathSciNetCrossRefGoogle Scholar
  16. 14.
    T. Geisel and J. Nierwetberg, in Dynamical Systems and Chaos, Lecture Notes in Physics 179, ed. L. Garrido (Springer, Berlin 1983) p. 93.Google Scholar
  17. 15.
    S. Grossmann and H. Fujisaka, Phys. Rev. A26, 1779 (1982) andADSGoogle Scholar
  18. 15a.
    S. Grossmann and H. Fujisaka, Z. Phys. B48, 261 (1982).MathSciNetADSGoogle Scholar
  19. 16.
    M. Schell, S. Fraser and R. Kapral, Phys. Rev. A 26, 504 (1982).MathSciNetADSCrossRefGoogle Scholar
  20. 17.
    T. Geisel and J. Nierwetberg, to be published.Google Scholar
  21. 18.
    T. Geisel and S. Thomae, to be published.Google Scholar
  22. 19.
    B.V. Chirikov, Phys. Rep. 52, 263 (1979).MathSciNetADSCrossRefGoogle Scholar
  23. 20.
    J. Nierwetberg and T. Geisel, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • T. Geisel
    • 1
  1. 1.Institut für Theoretische PhysikUniversität RegensburgRegensburgFederal Republic of Germany

Personalised recommendations