Discrete Nonlinear Dynamics

  • Siegfried Grossmann
Part of the NATO ASI Series book series (NSSB, volume 116)

Abstract

If external stress is applied to macroscopic systems they leave the equilibrium state and develop new orderings. One observes symmetry breaking with respect to space as well as to time. In this latter case the system either oscillates or shows even more complicated temporal evolution, characterized by the notion of chaos. It is this irregular behavior for which discrete nonlinear dynamics is a useful discipline. Although a very simplified description of realistic systems it retains one of their most essential features, namely, their nonlinearity. Nevertheless, it allows to calculate many properties analytically (and not only numerically). These lectures will deal with several aspects, methods, and results of discrete nonlinear dynamics which partly have been found recently in many experiments with dissipative systems.

Keywords

Vortex Cavitation Stein Verse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Ruelle, F. Takens, Comm. Math. Phys. 20, 167 (1971)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    L.D. Landau, C.R.(Dokl.) Acad. Sci. USSR 44, 311 (1944)MATHGoogle Scholar
  3. 2a.
    L.D. Landau, E. Hopf, Comm. Appl. Math. 1, 303 (1948)Google Scholar
  4. 3.
    M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 4.
    P. Coullet, C. Tresser, J. Physique (Paris), Colloque 39, C5–25(1978)Google Scholar
  6. 5.
    S. Grossmann, S. Thomae, Z. Naturforsch. 32a, 1353 (1977)MathSciNetADSGoogle Scholar
  7. 6.
    Y. Pomeau, P. Manneville, Phys. Lett. 75A, 1 (1979);MathSciNetADSGoogle Scholar
  8. 6a.
    Y. Pomeau, P. Manneville, Comm. Math. Phys. 74, 189 (1980)MathSciNetADSCrossRefGoogle Scholar
  9. 7.
    M.J. Feigenbaum, Phys. Lett. 74A, 375 (1979)MathSciNetADSGoogle Scholar
  10. 7a.
    M.J. Feigenbaum, in: Nonlinear Phenomena in Chemical Dynamics, Eds. C. Vidal, A. Pacault, Proc. Int. Conf. Bordeaux, Sept. 7–11, 1981, Springer: Berlin etc., 1981, p. 95CrossRefGoogle Scholar
  11. 8.
    S. Thomae, S. Grossmann, Phys. Lett. 83A, 181 (1981)ADSGoogle Scholar
  12. 9.
    N. Metropolis, M.L. Stein, P.R. Stein, J.Comb. Theor. A15, 25 (1973)MathSciNetCrossRefGoogle Scholar
  13. 10.
    T. Geisel, J. Nierwetberg, Phys. Rev. Lett. 47, 975 (1981)MathSciNetADSCrossRefGoogle Scholar
  14. 11.
    G. Ahlers, Phys. Rev. Lett. 33, 1185 (1974)ADSCrossRefGoogle Scholar
  15. 12.
    A. Libchaber, J. Maurer, J. Physique (Paris), Colloque, C3–51 (1980)Google Scholar
  16. 13.
    J.P. Gollub, S.V. Benson, J. Fluid Mech. 100, 449 (1980)ADSCrossRefGoogle Scholar
  17. 14.
    M. Giglio, S. Musatti, U. Perini, Phys. Rev. Lett. 47, 243 (1981)ADSCrossRefGoogle Scholar
  18. 15.
    J.P. Gollub, H.L. Swinney, Phys. Rev. Lett. 35, 927 (1975)ADSCrossRefGoogle Scholar
  19. 16.
    R.P. Fenstermacher, H.L. Swinney, J.P. Gollub, J. Fluid Mech. 94, 103 (1979)ADSCrossRefGoogle Scholar
  20. 17.
    Yu.N. Belyaev, A.A. Monakhov, S.A. Shcherbakov, I.M. Yavorskaya, JETP — Lett. 29, 295 (1979)ADSGoogle Scholar
  21. 18.
    O.E. Rössler, K. Wegmann, Nature 271, 89 (1978),CrossRefGoogle Scholar
  22. 18a.
    see also O.E. Rössler, Z. Naturforsch. 31a, 1168; 1664 (1976)ADSGoogle Scholar
  23. 19.
    L.F. Olsen, H. Degn, Nature 267, 177 (1977)ADSCrossRefGoogle Scholar
  24. 20.
    R.A. Schmitz, K.R. Graziani, J.L. Hudson, J.Chem.Phys. 67, 3040(1977)Google Scholar
  25. 21.
    J.C. Roux, A. Rossi, S. Bachelard, C. Vidal, Phys. Lett. 77A, 391 (1980);ADSGoogle Scholar
  26. 21a.
    J.S. Turner, J.C. Roux, W.D. Mc Cormick, H.L. Swinney, Phys. Lett. 85A, 9 (1981)ADSGoogle Scholar
  27. 22.
    P.S. Linsay, Phys. Rev. Lett. 47, 1349 (1981)ADSCrossRefGoogle Scholar
  28. 23.
    J. Testa, J. Pérez, C. Jeffries, Phys.Rev.Lett. 48, 714 (1982)MathSciNetADSCrossRefGoogle Scholar
  29. 24.
    W. Lauterborn, W. Meyer-Ilse, Diplomarbeit, Göttingen (1982)Google Scholar
  30. 25.
    G. Mayer-Kress, Bild der Wissenschaft, April 1983, p.14–15Google Scholar
  31. 26.
    W. Lauterborn, E. Cramer, Phys. Rev. Lett. 47, 1445 (1981)ADSCrossRefGoogle Scholar
  32. 27.
    H. Haken, Phys. Lett. 53A, 77 (1975);ADSGoogle Scholar
  33. 27a.
    H. Haken, Phys. Lett. 62A, 133 (1977)MathSciNetADSGoogle Scholar
  34. 28.
    H.M. Gibbs, F.A. Hopf, D.L. Kaplan, R.L. Shoemaker, Phys. Rev. Lett. 46, 474 (1981)ADSCrossRefGoogle Scholar
  35. 29.
    F.T. Arecchi, R. Meucci, G. Puccioni, J. Tredicce, Phys. Rev. Lett. 49, 1217 (1982)ADSCrossRefGoogle Scholar
  36. 30.
    R. Keolian, I. Rudnick, L.A. Turkevich, S.J. Putterman, J.A. Rudnick, Phys. Rev. Lett. 47, 1133 (1981)ADSCrossRefGoogle Scholar
  37. 31.
    C.W. Smith, M.J. Tejwani, D.A. Farris, Phys.Rev.Lett. 48, 492(1982)Google Scholar
  38. 32.
    Prediction by B.A. Huberman, J.P. Crutchfield, N.H. Packard, Appl. Phys. Lett. 37, 750 (1980)ADSCrossRefGoogle Scholar
  39. 33.
    M. Cirillo, N.F. Pedersen, Phys. Lett. 90A, 150 (1982)ADSGoogle Scholar
  40. 34.
    R.Y. Chiao, P.T. Parrish, J. Appl. Phys. 47, 2639 (1976)ADSCrossRefGoogle Scholar
  41. 35.
    D. Meier, R. Holzner, B. Derighetti, E. Brun, in: Evolution of Order and Chaos, Ed. H. Haken, Synergetics Symposium April 26–May 1, 1982, Springer: Berlin, etc., 1982Google Scholar
  42. 36.
    J.D. Farmer, J. Hart, P. Weidman, Phys. Lett. 91A, 22 (1982)MathSciNetADSGoogle Scholar
  43. 37.
    B.B. Mandelbrot, Ann. N.Y.Acad. Sci. 357, 249 (1980)ADSCrossRefGoogle Scholar
  44. 38.
    P. Svitanović, J. Myrheim, Phys. Lett. 94A, 329 (1983)ADSGoogle Scholar
  45. 39.
    T. Janssen, J.A. Tjon, Phys. Lett. 87A,139 (1982);MathSciNetADSGoogle Scholar
  46. 39a.
    T. Janssen, J.A. Tjon, J. Phys. A: Math. Gen. 16, 673; 697 (1983)MathSciNetADSCrossRefGoogle Scholar
  47. 40.
    K.G. Wilson, Phys. Rev. B4, 3174, 3184 (1971)ADSGoogle Scholar
  48. 40a.
    F. Wegner, Phys. Rev. B5, 4529 (1972)ADSGoogle Scholar
  49. 41.
    L.P. Kadanoff, Phys. Rev. Lett. 34, 1005 (1975)ADSCrossRefGoogle Scholar
  50. 41a.
    M.E. Fisher, Rev. Mod. Phys. 46, 597 (1974)ADSCrossRefGoogle Scholar
  51. 42.
    S.R. Mc Kay, A.N. Berker, S. Kirkpatrick, Phys.Rev.Lett. 48, 767(1982)MathSciNetGoogle Scholar
  52. 43.
    H. Weyl, Math. Ann. 77, 313 (1916)MathSciNetMATHCrossRefGoogle Scholar
  53. 44.
    R. Rammal, G. Toulouse, J. Physique-Lett. 44, L-13 (1983)Google Scholar
  54. 45.
    S. Grossmann, S. Thomae, to be publishedGoogle Scholar
  55. 46.
    T.-Y. Li, J.A. Yorke, Trans. Am. Math. Soc. 235, 183 (1978)MathSciNetMATHCrossRefGoogle Scholar
  56. 47.
    J. von Neumann, J. Res. Nat. Bus. Stand.Appl.Math.Ser. 3, 36(1951)Google Scholar
  57. 48.
    S.M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics 8 pp. 73 (1960)MathSciNetGoogle Scholar
  58. 49.
    T.-Y. Li, J. Approx. Theory 17, 177 (1976)MATHCrossRefGoogle Scholar
  59. 50.
    P. Grassberger, J.Stat. Phys. 26, 173 (1981)MathSciNetADSCrossRefGoogle Scholar
  60. 51.
    S. Grossmann, H. Fujisaka, Phys. Rev. A26, 1779 (1982);ADSGoogle Scholar
  61. 51a.
    S. Grossmann, H. Fujisaka, Z. Phys. B48, 261 (1982)MathSciNetADSGoogle Scholar
  62. 52.
    T. Geisel, J. Nierwetberg, Phys. Rev. Lett. 48, 7 (1982)MathSciNetADSCrossRefGoogle Scholar
  63. 53.
    M. Schell, S. Fraser, R. Kapral, Phys. Rev. A26, 504 (1982)MathSciNetADSGoogle Scholar
  64. 54.
    Details of the results in this section will be published elsewhereGoogle Scholar
  65. 55.
    S. Grossmann, S. Thomae, Phys.Lett. 97A (1983)Google Scholar
  66. 56.
    H. Fujisaka, S. Grossmann, S. Thomae, to be publishedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Siegfried Grossmann
    • 1
  1. 1.Fachbereich PhysikPhilipps-UniversitätMarburgGermany

Personalised recommendations