Phase Transition Analogies: Magnets, Lasers and Fluid Flows

  • J. Gea-Banacloche
  • M. O. Scully
  • M. G. Velarde
Part of the NATO ASI Series book series (NSSB, volume 116)


One of the early developments of the quantum theory of a laser vas the uncovering of a striking similarity between the behavior of a laser around threshold and a second-order phase transition such as the order-disorder transitions of ferromagnetic and superfluid systems /1, 2/. The analogy was soon extended to a variety of phenomena in quantum optics, such as the symmetry broken laser (laser with injected signal /1 /, lasers with saturable absorbers /3 /, optical bistability /4/and transient processes such as superfluorescence. Recently, the analogy has been extended in a bold though useful approach to hydrodynamic instabilities /5–8/. Such studies provided useful insights into the statistical mechanics of systems operating far from thermodynamic equilibrium and permitted the uncovering of fascinating phenomena in otherwise unrelated fields.


Saturable Absorber Hydrodynamic Instability Cooperative Phenomenon Fascinating Phenomenon Original Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Degiorgio and M. O. Scully, Phys. Rev. A2, 1170 (1970).ADSGoogle Scholar
  2. 2.
    R. Graham and H. Haken, Z. Physik 213 31 (1970).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    J.F. Scott, M. Sargent III and C.D. Cantrell, Opt. Commun. 15, 13 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    R. Bonifacio and L. A. Lugiato, Opt. Commun. 19, 172 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    H. Haken, Phys. Lett. 53A, 77 (1975)ADSGoogle Scholar
  6. 6.
    V. Degiorgio, Phys. Today, October issue, 42 (1976)Google Scholar
  7. 7.
    V. Degiorgio and L.A. Lugiato, Phys. Lett. 77A, 167 (1980)ADSGoogle Scholar
  8. 8.
    M.G. Velarde and J.C. Antoranz, Phys. Lett. 80A, 220 (1980);MathSciNetADSGoogle Scholar
  9. 8a.
    M.G. Velarde and J.C. Antoranz, Prog. Theor. Phys. 66, 717 (1981).ADSCrossRefGoogle Scholar
  10. 8b.
    See also M.G. Velarde, in Evolution of order and chaos, edited by H. Haken (Springer-Verlag, Berlin, 1982) p. 132.CrossRefGoogle Scholar
  11. 9.
    P. C. Martin, in Low Temperature Physics, edited by J. G. Daunt, D.O. Edwards, F.J. Milford, and M. Yaqub (Plenum, N. York, 1965) p. 9.Google Scholar
  12. 10.
    F. W. Cummins and J. R. Johnston, Phys. Rev. 151, 105 (1966)ADSCrossRefGoogle Scholar
  13. 11.
    M. Lax and W. H. Louisell, IEEE J. Quantum Electron. 3 67 (1967);ADSGoogle Scholar
  14. R. Graham and H. Haken, Z. Physik 235, 166 (1970).MathSciNetADSCrossRefGoogle Scholar
  15. 12.
    W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1969).MathSciNetCrossRefGoogle Scholar
  16. 13.
    C. Normand, Y. Pomeau and M.G. Velarde, Rev. Mod. Phys. 49, 581 (1977)MathSciNetADSCrossRefGoogle Scholar
  17. 14.
    W. W. Chow, M. O. Scully and E. W. Van Stryland, Opt. Commun. 15, 6 (1975).ADSCrossRefGoogle Scholar
  18. 15.
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, London, 1958).MATHGoogle Scholar
  19. 16.
    V.P. Chebotayev, I.M. Beterov and V. N. Lisitsyn, IEEE J. Quantum Electron. QE-4 788 (1968).ADSCrossRefGoogle Scholar
  20. 17.
    R. Graham, Phys. Rev. Lett 31, 1479 (1973). See also in Order and fluctuations in Equilibrium and Non-Equilibrium Statistical mechanics, edited by G. Nicolis, G. Dewel and J. W. Turner (Wiley, N. York, 1981) pp. 235–73 and references therein.ADSCrossRefGoogle Scholar
  21. 18.
    H. Haken, Synergetics (3rd. edition, Springer-Verlag, Berlin, 1983). Advanced Synergetics (Springer-Verlag, 1983).CrossRefGoogle Scholar
  22. 19.
    W.A. Smith, Phys. Rev. Lett. 32, 1164 (1974).ADSCrossRefGoogle Scholar
  23. 20.
    J. Swift and P.C. Hohenberg, Phys. Rev. A 15, 319 (1977).ADSGoogle Scholar
  24. 21.
    P. Glansdorff and I. Prigogine, Thermodynamics of Structure, Stability and Fluctuations (Wiley, N.York, 1971). See also G. Nicolis and I. Prigogine, Self-organization in Nonequilib-rium Systems (Wiley, N. York, 1977).Google Scholar
  25. 22.
    J.E. Wesfreid, Y. Pomeau, M. Dubois, C. Normand and P. Berge, J. Phys. (Paris) 39, 725 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. Gea-Banacloche
    • 1
  • M. O. Scully
    • 1
    • 2
  • M. G. Velarde
    • 3
  1. 1.Dept. Physics & AstronomyUniv. of New MexicoUSA
  2. 2.Max Planck Inst. Modern OpticsMunchenGermany
  3. 3.Fisica FundamentalU.N.E.D.MadridSpain

Personalised recommendations