Theory of Gaseous Combustion

  • Paul Clavin
  • Amable Liñán
Part of the NATO ASI Series book series (NSSB, volume 116)


The combustion processes are characterised by two non linear feedback mechanisms producing self-acceleration. One is of a thermal nature and the other is purely chemical.


Flame Front Mixture Fraction Diffusion Flame Premix Flame Flame Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. K. Adams and G. V. Stocks (1953). The combustion of hydrazine. Fourth (Int.) Symp. on Combustion, 239–248.Google Scholar
  2. 2.
    A. P. Aldushin, S. I. Khudyaev and Y. B. Zeldovich (1981). Flame propagation in the reacting gaseous mixture. Archivum Combustionis, 1 n°1/2, 9–21.Google Scholar
  3. 3.
    R. A. Allison, J. F. Clarke (1980).Theory of a hydro-oxyg.diffu. Combust. Sci Techn. 23, 113–123Google Scholar
  4. 4.
    D. G. Aronson and H. F. Weinberger (1978). Advances in Mathematics, vol.30 n°1, 33MathSciNetMATHCrossRefGoogle Scholar
  5. 4a.
    D. G. Aronson and H. F. Weinberger (1975) Non linear diffusion in population genetics Lecture Notes in Mathematics n°446, 5–40 Springer.Google Scholar
  6. 5.
    G. I. Barenblat, Y. B. Zeldovich and A. G. Istratov (1962). On diffusional thermal instability of laminar flame. In Russian. Prikl. Mekh. Tekh. 2, 21–26.Google Scholar
  7. 6.
    R. W. Bilger (1976). Turbulent jet diffusion flames Prog. Energy Combust. Sci. 1, 87CrossRefGoogle Scholar
  8. 7.
    L. Boyer (1983). Optical Diagnostics in flows. These Proceedings.Google Scholar
  9. 8.
    J. D. Buckmaster (1976). The quenching of deflagration waves. Combust. Flame26, 151–162.CrossRefGoogle Scholar
  10. 9.
    J. D. Buckmaster and G.S.S. Ludford (1982). Theory of laminar flames, Cambridge Univ. Press.MATHCrossRefGoogle Scholar
  11. 10.
    J. D. Buckmaster and D. Mikolaitis (1982). The premixed flame in counterflow, Combust. Flame, 47, 191.CrossRefGoogle Scholar
  12. 11.
    S. P. Burke and T.E.W. Schumann (1928). Industrial and Engineering Chemistry, 20, 998.CrossRefGoogle Scholar
  13. 12.
    W. B. Bush and F. E. Fendell (1970). Asymptotic analysis of laminar flame propagation. Combust. Sci. Tech. 1, 421–428.CrossRefGoogle Scholar
  14. 13.
    W. B. Bush and F. E. Fendell (1971). Asymptotic analysis of the structure of steady planar detonation. Combust. Sci. Tech. 2, 271–285.CrossRefGoogle Scholar
  15. 14.
    J. F. Clarke and A. C. Mcintosh (1980). The influence of a flame holder on a plane flame, including its static stability. Proc; R. Soc. London A372, 367–392.ADSGoogle Scholar
  16. 15.
    J. F. Clarke (1968). On the structure of a Hydro. Oxyg.Dif.Flame Proc. Roy. Soc. A. 307, 283–302ADSCrossRefGoogle Scholar
  17. 16.
    J. F. Clarke (1969).Reaction broadening in H2-O2 diffusion flames Proc. Roy. Soc. A.312, 65–83ADSCrossRefGoogle Scholar
  18. 17.
    J. F. Clarke (1975).Parameter perturbations in flame theory. Progr. Aerospace Sci. 16, 3.29Google Scholar
  19. 18.
    P. Clavin and F. A. Williams (1982). Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames. J. Fluid Mech. 116, 251–282.ADSMATHCrossRefGoogle Scholar
  20. 19.
    P. Clavin and G. Joulin (1983). Premixed flames in large scale and high intensity turbulent flow. J. Physique Lettres, 44 L1–L2.CrossRefGoogle Scholar
  21. 20.
    P. Clavin (1984). Dynamical behavior of premixed fronts in laminar and turbulent flows. Progr. Energy Combust. Sci. to appear.Google Scholar
  22. 21.
    J. D. Cole (1968). Perturbation methods in applied mathematics. Blaisdell, Waltham, Mass. MATHGoogle Scholar
  23. 22.
    G. Darrieus (1983. Propagation d’un front de flamme. Unpublished works presented at “La Technique Moderne” in 1938 and at the “Congrès de Mécanique Appliquée, Paris, 1945”.Google Scholar
  24. 23.
    B. Deshaies, G. Joulin and P. Clavin (1981). Etude asymptotique des flammes sphériques non adiatatiques. J. Mécanique 20, 691–735.MATHGoogle Scholar
  25. 24.
    F. E. Fendell (1972). Asymptotic analysis of premixed burning with large activation energy. J. Fluid Mech. 56, 81–95.ADSMATHCrossRefGoogle Scholar
  26. 25.
    P. C. Fife (1979). Mathematical aspects of reacting and diffusing systems. Lecture Notes in Biomathematics n°28, Springer Verlag.CrossRefGoogle Scholar
  27. 26.
    R. A. Fisher (1937). The wave of advance of advantageous genes. Annals of Eugenics 7, 355–369.CrossRefGoogle Scholar
  28. 27.
    D. A. Frank Kaminetskii (1969). Diffusion and heat transfert in chemical kinetics, Plenum Press. Google Scholar
  29. 28.
    I. M. Gelfand (1959). Uspeki Mat. Nauk (N.S.) 14, n°2 (86), 87–158. Some problems in the theory of quasilinear equations. American Mathematical translations (1963) Series é vol.29, 295–381.Google Scholar
  30. 29.
    P. Higuera (1983). Private communication, Madrid, August 1983.Google Scholar
  31. 30.
    E. Jouguet (1913). Sur la propagation des deflagrations dans les melanges gazeux, Compte rend. acad. sci. Paris, T.156, n°11, 872–876, see also “La mécanique des explosifs”, Douin 1917.MATHGoogle Scholar
  32. 31.
    G. Joulin and P. Clavin (1976). Analyse asymptotique des conditions d’extinction des flammes laminaires, Acata Astronautica 3, 223–240.CrossRefGoogle Scholar
  33. 32.
    G. Joulin and P. Clavin (1979). Linear stability analysis of non adiabatic flames. Combust. Flame 35, 139–153.CrossRefGoogle Scholar
  34. 33.
    G. Joulin and T. Mitani (1981). Linear stability analysis of two reactant flames. Combust. Flame 40, 235–246.CrossRefGoogle Scholar
  35. 34.
    B. Karlowitz, J. R. Denniston, D. H. Knapschaefer, F.E. Wells (1953). Studies on turbulent flames, Fourth (Int.) Symp. on Combustion, 613–620.Google Scholar
  36. 35.
    A. N. Kolmogorov, I.G. Petrovskil, N.S. Piskunov (1937). A study of the equation of diffusion with increase in the quantity of matter and its application to a biological problem. Bjul. Moskovskovo Gos. Univ. 1 n°7, 1–72.Google Scholar
  37. 36.
    L. Krishnamunthy, F.A. Williams, K. Seshadri (1976). Asymptotic theory of diffusion flames extinctions in the stagnation Combust. and Flame, 26, 363.377CrossRefGoogle Scholar
  38. 37.
    Y. Kuramoto (1978). Diffusion-Induced chaos in reaction systems . Supplement of the Progress of theoretical Physics 64 346–367. See also “Synergetics”(Bielefeld 1979)ADSCrossRefGoogle Scholar
  39. 38.
    L. Landau (1944). On the theory of slow combustion. ActaPhysicochimica URSS vo.XIX n°1, 77–85.Google Scholar
  40. 39.
    C. K. Law (1975). Asymptotic theory for ignition and extinction Combust. and Flame, 24, 89.98CrossRefGoogle Scholar
  41. 40.
    P. A. Libby, and F.A. Williams (1982). Structure of laminar flamelets in premixed turbulent flames, Combust. Flame, 44 287–303.CrossRefGoogle Scholar
  42. 41.
    P. A. Libby, A. Lilian, F.A. Williams (1983). Strained premixed flames with non unity Lewis numbers. Combust. Sci. Tech. to appear.Google Scholar
  43. 42.
    A. Lilian (1971). A theoretical analysis of premixed flame propagation with an isothermal chain reaction. Contrat n°E00AR 68–0031 Technical report 1 INTA. Madrid.Google Scholar
  44. 43.
    A. Linan (1974). The asymptotic structure of counter flow diffusion flames for large activation energies. Acta Astronautica 1, 1007–1039.CrossRefGoogle Scholar
  45. 44.
    A. Liñan (1976). Monopropellant droplet decomposition for large activation energies. Acta Astronautica 2, 1009–1029.CrossRefGoogle Scholar
  46. 45.
    A. Linan and P. Clavin (1984). Premixed flames with non branching chaiin reaction. J. Chem. Phys. submitted.Google Scholar
  47. 46.
    A. Linan and A. Crespo (1976). An asymptotic analysis of unsteady diffusion flames. Combust. Sci. Technol. 14, 95–117.CrossRefGoogle Scholar
  48. 47.
    A. Lilian (1961). On the internal structure of laminar diffusion flames. TN n°3 for INTA-AFOSR contract AF 61(052) -221.(AD n°273069)Google Scholar
  49. 48.
    L. Mallard and H.L. Le Chatelier (1883). Recherches expérimentales et théoriques sur la combustion des mélanges gazeux. Annales des mines 4, 274–553.Google Scholar
  50. 49.
    G. H. Markstein (1964). Non steady flame propagation, Pergamon Press. Google Scholar
  51. 50.
    M. Matalon and B.J. Matkowsky (1982). Flames as gasdynamics discontinuities. J. Fluid Mech. 124, 239–259.ADSMATHCrossRefGoogle Scholar
  52. 51.
    A. Melvin and J.B. Moss (1970). Fifteenth International symposium on Combustion, 625. The Combustion Institute. Pittsburgh.Google Scholar
  53. 52.
    D. M. Michelson and G.I. Sivashinsky (1977). Non linear analysis of hydrodynamic instability in laminar flames II. Acta Astronautica 4, 1207–1221.MathSciNetMATHCrossRefGoogle Scholar
  54. 53.
    J. D. Murray (1977). Lectures on non linear differential equations model in biology. Clarendon Press Oxford. 34.Google Scholar
  55. 53.
    P. Pelcé and P. Clavin (1982). Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219–237.ADSMATHCrossRefGoogle Scholar
  56. 55.
    N. Peters and J. Warnatz (1982). Numerical methods in laminar flame propagation. Notes on numerical fluid mechanics 6 Viewieg.MATHGoogle Scholar
  57. 56.
    N. Peters (1983). Laminar diffusion flamelet models in non pre. To appear in Prog. Energy Combustion Sci. Google Scholar
  58. 57.
    N. Peters, W. Hocks and G. Mohinddin (1981).Turbulent mean reaction rates in the J. Fluid Mechanics 110, 411.432ADSMATHCrossRefGoogle Scholar
  59. 58.
    N. Peters and F.A. Williams (1981). in: The role of coherent structures in modelling turbulence and mixing, J. Jimenez, Ed. Lectures Notes in Physics 136, 364, Springer.Google Scholar
  60. 59.
    N. Peters and F.A. Williams (1983).Lift off characteristics of turbu. jet diffusion flames. AIAA J. 21, 423.429ADSMATHCrossRefGoogle Scholar
  61. 60.
    N. Peters (1979). Premixed burning in diffusion flames. Int. J. Heat and Mass Transfer 22, 691–703MATHCrossRefGoogle Scholar
  62. 61.
    J. Quinard, G. Searby and L. Boyer (1983). The stability limits and critical size of structures in premixed flames. These proceedings.Google Scholar
  63. 62.
    G. Searby, F. Sabathier, P. Clavin and L. Boyer (1983). The hydrodynamical coupling between the motion of a flame front and the upstream gas flow. Phys. Rev. Letters, to appear (issue of 17 oct.83).Google Scholar
  64. 63.
    G. I. Sivashinsky (1977). Non linear analysis of hydrodynamic instability in laminar flames I, Acta Astronautica, 4, 1177–1206.MathSciNetMATHCrossRefGoogle Scholar
  65. 64.
    G. I. Sivashinsky (1983). Instabilities, pattern formation, and turbulence in flames. Ann. Rev. Fluid Mech.15, 179–199.ADSCrossRefGoogle Scholar
  66. 65.
    M. Taffanel (1913). Sur la combustion des mélanges gazeux et les vitesses de réaction. Compt. rend. acad. sci. Paris 27 X 1913, 714–717Google Scholar
  67. 65a.
    M. Taffanel (1913). Sur la combustion des mélanges gazeux et les vitesses de réaction. Compt. rend. acad. sci. Paris 29 XII 1913, 42–45.Google Scholar
  68. 66.
    M. Van Dyke (1964). Perturbation Methods in fluid mechanics, Academic MATHGoogle Scholar
  69. 67.
    F. A. Williams (1965). Combustion theory. Addison Wesley.Google Scholar
  70. 68.
    F. A. Williams (1981). Review of flame extinction. Fire Safety Journal 3, 163–175CrossRefGoogle Scholar
  71. 69.
    F. A. Williams (1975). Turbulent Mixing in Non-reactive and Reactive Flows, p.189, S.N.B. Murthy, Ed. PlenumGoogle Scholar
  72. 70.
    J. B. Zeldovich and D.A. Frank Kamenetskii (1938). A theory of thermal propagation of flame, Acta physicochimica U.R.S.S. IX n°2, 341–350.Google Scholar
  73. 71.
    J. B. Zeldovich (1948). Theory of flame propagation. Zhur. Fiz. Khim. USSR, 22, 27–49.Google Scholar
  74. 72.
    J. B. Zeldovich, G.I. Barenblatt, V. Librovich, G.M. Makviladze (1980). Mathematiheckay Teoria Gorenya i Vzriva. Nauka.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Paul Clavin
    • 1
  • Amable Liñán
    • 2
  1. 1.LA-72Université de ProvenceMarseilleFrance
  2. 2.ETSI AeronáuticoUniversidad PolitécnicaMadrid-3Spain

Personalised recommendations