Thermohydrodynamic Instability in Nematic Liquid Crystals: A Summary of Arguments and Conditions for Some Simple Geometries

  • I. Zuñiga
  • M. G. Velarde
Part of the NATO ASI Series book series (NSSB, volume 116)


Convection in nematic liquid crystals has been the object of intense research over the past few years. It was predicted and experimentally verified that the anisotropic tensor properties of the fluid, taken Newtonian in flow characteristics generates genuine and novel qualitative and quantitative features when flow is induced by thermal constraints or buoyancy forces. For instance, in a Rayleigh-Bénard geometry steady convection exists when the fluid layer is heated from below or from above. Threshold values are drastically lower than those typical of isotropic fluids under similar conditions. Oscillatory modes have also been studied. Furthermore, the interplay of thermal constraints and magnetic or electric fields leads to a unusual richness in the phenomena so far observed. We shall summarize here some of the conditions for thermal convection in Rayleigh-Bénard and cylindrical geometries with no pretension to completeness. We merely want to introduce the subject developed in the lectures by Prof. T. Riste. For an introduction to the physics and the hydrodynamics of liquid crystals the reader may refer to the monographs by de Gennes (1974) or Chandrasekhar (1977).


Rayleigh Number Nematic Liquid Crystal Oscillatory Convection Neutral Stability Curve Thermal Constraint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoranz, J.C., Ph. D. Dissertation (1982), U.N.E.D. (Madrid)Google Scholar
  2. Barratt, P.J., and I. Zuñiga, J. Physique, 44 (1983), 311–321.Google Scholar
  3. Carrigan, C.R. and E. Guyon, J. Physique Lett 36 (1975) L-145.CrossRefGoogle Scholar
  4. Chandrasekhar, S., Liquid Crystals, University Press, Cambridge, (1977).Google Scholar
  5. Dubois-Violette, E., Solid State Commun. 14 (1974) 767.ADSCrossRefGoogle Scholar
  6. Dubois-Violette, E. and M. Gabay, J. Physique 43 (1982) 1305–1317.CrossRefGoogle Scholar
  7. De Genes, P.G., The Physics of Liquid Crystals, Claredon Press (1974).Google Scholar
  8. Guyon, E., P. Pieranski and J. Salan, J. Fluid Mech. 93 (1979) 65ADSCrossRefGoogle Scholar
  9. Guyon, E., and M.G. Velarde, J. Physique Lett. 39 (1979) L-205Google Scholar
  10. Koschmieder E.L. in Order and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics J. Wiley and sons, N.Y. (1981).Google Scholar
  11. Lekkerkerker J. Physique Lett. 38 (1977) L-277.CrossRefGoogle Scholar
  12. Normand, C., Y. Pomeau and M.G. Velarde, Rev. Mod. Phys. 49 (1977) 581–624MathSciNetADSCrossRefGoogle Scholar
  13. Pieranski, P., E. Dubois-Violette, and E. Guyon, Phys. Lett. 30 (1973) 16.CrossRefGoogle Scholar
  14. Salan, J., and E. Guyon, J. Fluid Mech. 126 (1983) 13–26ADSCrossRefGoogle Scholar
  15. Schechter, R.S., M.G. Velarde and J.K. Platten, Adv. Chem. Phys. 26 (1974) 265.CrossRefGoogle Scholar
  16. Velarde, M.G., and R.S. Schechter, Phys. Fluids 15 (1972) 1707.ADSMATHCrossRefGoogle Scholar
  17. Velarde, M.G., and I. Zúñiga, J. Physique 40 (1979), 725–731.CrossRefGoogle Scholar
  18. Velarde, M.G., and J.C. Antoranz, Phys. Lett A80 (1980) 220MathSciNetADSGoogle Scholar
  19. Velarde, M.G., and C. Normand, Sci. Am. 243 (1980) 92–108.ADSCrossRefGoogle Scholar
  20. Velarde, M.G., in Nonlinear Fhenomena at Phase Transitions and Instabilities (T. Riste, editor), Plenum Press, N.Y., (1981), 205–247.Google Scholar
  21. Velarde, M.G., in Evolution of Order and Chaos (H. Haken, editor), Springer-Verlag, (1982) 132–145.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • I. Zuñiga
    • 1
  • M. G. Velarde
    • 1
  1. 1.Departamento de Física FundamentalU.N.E.D.MadridSpain

Personalised recommendations