Activity of Ecto-5′-Nucleotidase in Lymphoblastoid Cell Lines Derived from Carriers of Congenital X-Linked Agammaglobulinemia

  • Linda F. Thompson
  • Gerry R. Boss
  • Annie Bianchino
  • J. Edwin Seegmiller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 122B)


Patients with congenital X-linked agammaglobulinemia (CAG)* have 1/2 to 1/3 the normal activity of ecto-5′-nucleotidase (ecto-5′-NT) in their peripheral blood mononuclear cells (1,2). Since peripheral B cells have at least 3 times more ecto-5′-NT activity than peripheral T cells (2,3) this deficiency can be largely explained by the absence of circulating B cells in these patients (4). In an attempt to develop a biochemical test for detection of carriers for CAG, ecto-5′-NT was measured in peripheral B cells and in lymphoblastoid (B) cell lines established from mothers and sisters of patients with CAG.


Lymphoblastoid Cell Line Female Relative Nucleotidase Activity Peripheral Blood Mono Rosetting Cell 



congenital X-linked agammaglobulinemia




peripheral blood mononuclear cells


surface immunoglobulin


Epstein-Barr virus


N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid


inosine 5′-monophosphate


α, β-methylene adenosine 5′-diphosphate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. L. Edwards, D. B. Magilavy, J. T. Cassidy, and I. H. Fox, Lymphocyte ecto-5′-nucleotidase deficiency in agammaglobulinemia. Science 201: 628 (1978).PubMedCrossRefGoogle Scholar
  2. 2.
    G. R. Boss, L. F. Thompson, I. V. Jansen, R. D. O’Connor, H. L. Spiegelberg, T. A. Waldmann, and R. N. Hamburger, 5′-Nucleotidase activity in T and B lymphocytes of normal subjects and patients with congenital X-linked agammaglobulinemia. Fed. Proc. 38: 496 (1979).Google Scholar
  3. 3.
    M. Rowe, C. G. DeGase, T. A. E. Platts-Mills, G. L. Asherson, A. D. B. Webster, and S. M. Johnson, 5′-Nucleotidase of B and T lymphocytes isolated from human peripheral blood. Clin. Exp. Immunol. 36: 97 (1979).PubMedGoogle Scholar
  4. 4.
    R. S. Geha, F. S. Rosen, and E. Merler, Identification and characterization of subpopulations in human peripheral blood after fractionation on discontinuous gradients of albumin. The cellular defect in X-linked agammaglobulinemia. J. Clin. Invest. 52: 1726 (1974).CrossRefGoogle Scholar
  5. 5.
    A. Böyum, A separation of leukocytes from blood and bone marrow. Scan. J. Clin. Lab. Invest. 21 (Suppl. 97): 77 (1968).Google Scholar
  6. 6.
    M. S. Weiner, C. Bianco, and V. Nusseuzweig, Enhanced binding of neuraminidase-treated sheep erythrocytes to human T lymphocytes. Blood 42: 939 (1973).PubMedGoogle Scholar
  7. 7.
    W. S. Sly, G. S. Sekhon, R. Kennett, W. F. Bodmer, and J. Bodmer, Permanent lymphoid lines from genetically marked lymphocytes: Success with lymphocytes recovered from frozen storage. Tissue Antigens 7: 165 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    G. R. Boss, L. F. Thompson, H. L. Spiegelberg, T. A. Waldmann, R. D. O’Connor, R. N. Hamburger, and J. E. Seegmiller, Lymphocyte ecto-5′-nucleotidase activity as a marker of B-cell maturation. Trans. Assoc. Am. Phys., in press (1979).Google Scholar
  9. 9.
    E. R. Stiehm, Fetal defense mechanisms. Am. J. Dis. Child 129: 438 (1975).PubMedGoogle Scholar
  10. 10.
    R. C. Davidson, H. M. Nitowsky, and B. Childs, Demonstration of two populations of cells in the human female heterozygous for glucose-6-phosphate dehydrogenase variants. Proc. Natl. Acad. Sci. USA 50: 481 (1963).PubMedCrossRefGoogle Scholar
  11. 11.
    A. R. Hayward and M. F. Greaves, Central failure of B-lymphocyte induction in pan-hypogammaglobulinemia. Clin. Immunol. and Immunopath. 3: 461 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Linda F. Thompson
    • 1
  • Gerry R. Boss
    • 1
  • Annie Bianchino
    • 1
  • J. Edwin Seegmiller
    • 1
  1. 1.Department of MedicineUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations