Purine Metabolism in Cultured Coronary Endothelial Cells

  • S. Nees
  • A. L. Gerbes
  • B. Willershausen-Zönnchen
  • E. Gerlach
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 122B)


Although it is well known that endothelial cells are involved in several biological processes such as transport1, hemostasis2, synthesis of collagen3, histamine4 and prostaglandins5, our knowledge concerning intermediary metabolism of the endothelium is rather limited. In the course of studies on interrelationships between heart function and cardiac metabolism6,7 we became interested in some features of purine metabolism of coronary endothelial cells. Our interest was initiated by the assumption that these cells might contribute to the production of vasoactive adenosine which is considered to play an important role in the metabolic regulation of coronary blood flow8,9. The studies — not possible of course to be performed under in vivo conditions — were carried out on cultured endothelial cells isolated from coronary vessels of guinea pig hearts as recently described10.


High Pressure Liquid Chromatography Adenine Nucleotide Adenosine Deaminase Purine Metabolism Coronary Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    F. Clementi and G. E. Palade, Intestinal capillaries. Permeability to peroxidase and ferritin, J. Cell. Biol. 41:33 (1969)PubMedCrossRefGoogle Scholar
  2. 2).
    E. A. Jaffe, L. W. Hoyer, and R. L. Nachman, Synthesis of von Willebrand factor by cultured human endothelial cells, Proc. Natl. Acad. Sci. USA 71:1906 (1974)PubMedCrossRefGoogle Scholar
  3. 3).
    B. V. Howard, E. J. Macarak, D. Gunsen, and N. A. Kefalides, Characterization of the collagen synthesized by endothelial cells in culture, Proc. Natl. Acad. Sci. USA, 73:2361 (1976)PubMedCrossRefGoogle Scholar
  4. 4).
    T. M. Hollis and L. A. Rosen, Histidine decarboxylase activity of bovine aortic endothelium and intima-media, Proc. Soc. Exp. Biol. Med. 141:978 (1972)PubMedGoogle Scholar
  5. 5).
    M. A. Gimbrone Jr. and R. W. Alexander, Angiotensin II stimulation of prostaglandin production in cultured human vascular endothelium, Science 189:219 (1975)PubMedCrossRefGoogle Scholar
  6. 6).
    J. Schrader and E. Gerlach, Compartmentation of cardiac adenine nucleotides and formation of adenosine, Pflügers Arch. 367:129 (1976)PubMedCrossRefGoogle Scholar
  7. 7).
    J. Schrader, S. Nees, and E. Gerlach, Evidence for a cell surface adenosine receptor on coronary myocytes and atrial muscle cells, Pflügers Arch. 369:251 (1977)PubMedCrossRefGoogle Scholar
  8. 8).
    R. M. Berne, Cardiac nucleotides in hypoxia: a possible role in regulation of coronary blood flow, Am. J. Physiol. 204:317 (1963)PubMedGoogle Scholar
  9. 9).
    E. Gerlach, B. Deuticke and R. H. Dreisbach, Der Nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel und seine mögliche Bedeutung für die Koronardurchblutung, Naturwissenschaften 50:229 (1963)CrossRefGoogle Scholar
  10. 10).
    S. Nees, A. L. Gerbes, B. Willershausen-Zönnchen, and E. Gerlach, Isolation, culture and morphologie characterization of endothelial cells from coronary vessels, abstract of the 51st Meeting (Spring Meeting) of the Deutsche Physiologische Gesellschaft, Kiel (1979)Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • S. Nees
    • 1
  • A. L. Gerbes
    • 1
  • B. Willershausen-Zönnchen
    • 1
  • E. Gerlach
    • 1
  1. 1.Physiologisches InstitutUniversität MünchenMünchen 2Germany

Personalised recommendations