Enzymes of Purine Interconversions in Subfractions of Lymphocytes

  • J. P. R. M. van Laarhoven
  • G. Th. Spierenburg
  • C. H. M. M. de Bruyn
  • E. D. A. M. Schretlen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 122B)


Previously described micromethods for the determination of purine interconversion enzyme activities in lymphocytes (1) enable us to analyse purine metabolism systematically in lymphocyte subfractions using a relatively small number of cells (500–5000). A relation between purine interconversion defects and immune dysfunctions has been established (2–4). The mechanism by which adenosine deaminase (ADA) deficiency leads to impairment of the B and T cell and purine nucleoside Phosphorylase (PNP) deficiency leads to T cell dysfunction is not yet completely understood. A better understanding of purine interconversions in B and T cell subfractions might help to obtain a better view on B or T cell specificity in these immune diseases. One of the possibilities to achieve this might be a systematic enzymological analysis of purine metabolism in T and non-T lymphocytes. Nine purine enzyme activities were measured in T and non-T lymphocyte subpopulations using 500–5000 cells per assay.


Adenosine Deaminase Sheep Erythrocyte Purine Metabolism Purine Nucleoside Phosphorylase Adenosine Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.P.R.M. van Laarhoven, G.Th. Spierenburg, F.T.J.J. Oerlemans and C.H.M.M. de Bruyn, Adv. Exp. Med. Biol., this volumeGoogle Scholar
  2. 2.
    E.R. Giblett, J.E. Anderson, F. Cohen, B. Pollara and H.J. Meuwissen, Lancet i:1067 (1972).CrossRefGoogle Scholar
  3. 3.
    E.R. Giblett, A.J. Ammann, D.W. Ward, R. Sandman and L.K. Diamond, Lancet ii:1010 (1975).CrossRefGoogle Scholar
  4. 4.
    N.L. Edwards, D.B. Magilavy, J.T. Cassidy and I.H. Fox, Science 201:628 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    B.E.J. de Pauw, J.M.C. Wessels, E.J.M. Geestman, J.B.J.M. Smeulders, D.J.Th. Wagener and C. Haanen, J. Imm. Meth. 25:291 (1979).CrossRefGoogle Scholar
  6. 6.
    M.H.J. van Oers, W.P. Zeylemaker and P.T.A. Schellekens, Eur. J. Imm. 7:143 (1977).CrossRefGoogle Scholar
  7. 7.
    A.T. Huang, G.L. Logue and H.L. Engelbrecht, Brit. J. Haematol. 34:631 (1976).CrossRefGoogle Scholar
  8. 8.
    G.L. Tritsch and J. Minowada, J. Natl. Cancer Inst. 60:1301 (1978).PubMedGoogle Scholar
  9. 9.
    R. Tung, R. Silber, F. Quagliata, M. Conklyn, J. Gottesman, R. Hirschhorn, J. Clin. Invest. 57:756 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Borgers, H. Verhaegen, M. de Brabander, F. Thoné, J. van Reempts and G. Geuens, J. Imm. Meth. 16:101 (1977).CrossRefGoogle Scholar
  11. 11.
    K.O. Raivio and T. Hovi, Exp. Cell Res. 116:75 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. P. R. M. van Laarhoven
    • 1
  • G. Th. Spierenburg
    • 1
  • C. H. M. M. de Bruyn
    • 1
  • E. D. A. M. Schretlen
    • 2
  1. 1.Dept. of Human GeneticsUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Dept. of Pediatrics, Faculty of MedicineUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations