Inhibition of Immune Cell Function by Adenosine: Biochemical Studies

  • Thomas P. Zimmerman
  • Gerald Wolberg
  • Gail S. Duncan
  • Robert D. Deeprose
  • Robert J. Harvey
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 122B)


Adenosine (Ado) has been shown to inhibit the cytolysis of tumor cells by specifically-sensitized mouse lymphocytes1. The mechanism of this immunosuppressive effect of Ado is of interest in view of the apparent causal relationship between Ado deaminase deficiency and severe combined immunodeficiency disease2. Thus far, Ado has been shown to cause two distinct biochemical effects in the cytolytic lymphocytes: (i) an elevation of adenosine 3′:5′-monophosphate (cAMP)1; and (ii) an elevation of S-adenosylhomocysteine (AdoHcy)3. Ado has little or no effect on the pool sizes of CTP, UTP, ATP or GTP in these cells1,4. Studies with other agents have shown that a selective elevation of either cAMP, as caused by prostaglandin E 1 5 , or AdoHcy, as caused by 3-deazaadenosine3, is sufficient to inhibit the cytolytic activity of these lymphocytes. The present studies were therefore undertaken in an attempt to discern the relative importance of cAMP and AdoHcy to this immunosuppressive action of Ado.


Cytolytic Activity Severe Combine Immunodeficiency Reversal Agent Immune Cell Function Hill Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Wolberg, T.P. Zimmerman, K. Hiemstra, M. Winston, and L.-C. Chu (1975) Science 187, 957.PubMedCrossRefGoogle Scholar
  2. 2.
    E.R. Giblett, J.E. Anderson, F. Cohen, B. Pollara, and H.J. Meuwissen (1972) Lancet 2, 1067.PubMedCrossRefGoogle Scholar
  3. 3.
    T.P. Zimmerman, G. Wolberg, and G.S. Duncan (1978) Proc. Nat. Acad. Sci. 75, 6220.PubMedCrossRefGoogle Scholar
  4. 4.
    G. Wolberg, T.P. Zimmerman, G.S. Duncan, K.H. Singer, and G.B. Elion (1978) Biochem. Pharmacol. 27, 1487.PubMedCrossRefGoogle Scholar
  5. 5.
    C.S. Henney, H.E. Bourne, and L.M. Lichtenstein (1972) J. Immunol. 108, 1526.PubMedGoogle Scholar
  6. 6.
    T.P. Zimmerman, G. Wolberg, C.R. Stopford, and G.S. Duncan (1979) in Transmethylation, eds. E. Usdin, R.T. Borchardt, and C.R. Creveling, Elsevier North Holland, Inc., New York, p. 187.Google Scholar
  7. 7.
    H.J. Schaeffer and C.F. Schwender (1974) J. Med. Chem. 17, 6.PubMedCrossRefGoogle Scholar
  8. 8.
    H. Sheppard and G. Wiggan (1971) Mol. Pharmacol. 7, 111.PubMedGoogle Scholar
  9. 9.
    N.M. Kredich and D.W. Martin, Jr. (1977) Cell 12, 931.PubMedCrossRefGoogle Scholar
  10. 10.
    A. Sattin and T.W. Rall (1970) Mol. Pharmacol. 6, 13.PubMedGoogle Scholar
  11. 11.
    A. Cohen, B. Ullman, and D.W. Martin, Jr. (1979) J. Biol. Chem. 254, 112.Google Scholar
  12. 12.
    T.P. Zimmerman, R.D. Deeprose, G. Wolberg, and G.S. Duncan (in press) Biochem. Pharmacol. Google Scholar
  13. 13.
    J. Monod, J.-P. Changeux, and F. Jacob (1963) J. Mol. Biol. 6, 306.PubMedCrossRefGoogle Scholar
  14. 14.
    J.L. Webb (1965) in Enzyme and Metabolic Inhibitors, Vol. 1, Academic Press, New York, p. 507.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Thomas P. Zimmerman
    • 1
  • Gerald Wolberg
    • 1
  • Gail S. Duncan
    • 1
  • Robert D. Deeprose
    • 1
  • Robert J. Harvey
    • 1
  1. 1.Wellcome Research LaboratoriesResearch Triangle ParkUSA

Personalised recommendations