Advertisement

Purine Ribonucleoside and Deoxyribonucleoside Metabolism in Thymocytes

  • Floyd F. Snyder
  • Trevor Lukey
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 122B)

Abstract

The human deficiencies of adenosine deaminase and purine nucleoside phosphorylase activities are associated with an accumulation of the purine deoxyribonucleoside triphosphates, dATP (1–4) and dGTP (4) respectively. In the absence of adenosine deaminase or purine nucleoside phosphorylase activities, deoxyadenosine or deoxyguanosine are presumed to be rephosphorylated, thereby producing increased dATP or dGTP concentrations which may in turn inhibit ribonucleotide reductase. We have therefore examined the specificity and optimal assay conditions for the principal purine ribonucleoside and deoxyribonucleoside kinase activities in mouse thymocytes. The role of these activities was evaluated by analyzing the competition for common substrates between the nucleoside kinases and adenosine deaminase or purine nucleoside phosphorylase.

Keywords

Adenosine Deaminase Purine Nucleoside Purine Nucleoside Phosphorylase Mouse Thymocyte Optimal Assay Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.S. Coleman, J. Donofrio, J.J. Hutton, L. Hahn, A. Daoud, B. Lampkin and J. Dyminski, J.Biol.Chem. 253:1619–1626 (1978).PubMedGoogle Scholar
  2. 2.
    A. Cohen, R. Hirschhorn, S.D. Horowitz, A. Rubinstein, S.H. Polmar, R. Heng and D.W. Martin, Jr, Proc. Natl. Acad. Sci. USA 75:472–476 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Donofrio, M.S. Coleman, J.J. Hutton, A. Daoud, B. Lampkin and J. Dyminski, J.Clin.Invest. 62:884–887 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Cohen, L.J. Gudas, A.J. Amman, G.E.J. Staal and D.W. Martin, Jr, J.Clin.Invest. 62:1405–1409 (1978).CrossRefGoogle Scholar
  5. 5.
    M.S. Hershfield, F.F. Snyder and J.E. Seegmiller, Science 197: 1284–1287 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    H.J. Schaeffer and C.F. Schwender, J.Med.Chem. 17:6–8 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    B. Lindberg, H. Klenow and K. Hansen, J.Biol.Chem. 242: 350–356 (1967).PubMedGoogle Scholar
  8. 8.
    J.W. De Jong, Arch.Int.Physiol.Biochim. 85:557–569 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    R.C. Jackson, H.P. Morris and G. Weber, Brit.J.Cancer 37:701–713 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    R.L. Miller, D.L. Adamczyk and W.H. Miller, J.Biol.Chem. 254: 2339–2345 (1979).PubMedGoogle Scholar
  11. 11.
    F.F. Snyder, J. Mendelsohn and J.E. Seegmiller, J.Clin.Invest. 58:654–666 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    J.P. Durham and D.H. Ives, J.Biol.Chem. 245:2276–2284 (1970).PubMedGoogle Scholar
  13. 13.
    T.A. Krenitsky, J.V. Tuttle, G.W. Koszalka, I.S. Chen, L.M. Beachem III, J.L. Rideout and G.B. Elion, J.Biol.Chem. 251: 4055–4061 (1976).PubMedGoogle Scholar
  14. 14.
    Y. Kozai, S. Sonoda, S. Kobayashi and Y. Sugino, J.Biochem. 71: 485–496 (1972).PubMedGoogle Scholar
  15. 15.
    L. J. Gudas, B. Ullman, A. Cohen and D.W. Martin, Jr, Cell 14: 531–538 (1978).Google Scholar
  16. 16.
    M. B. Meyers and W. Kreis, Arch.Biochem.Biophys. 177:10–15 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    W.R. Gower, Jr, M.C. Carr and D.H. Ives, J.Biol.Chem. 254: 2180–2183 (1979).PubMedGoogle Scholar
  18. 18.
    D.A. Carson, J. Kaye and J.E. Seegmiller, Proc.Nat1.Acad.Sci.USA 74:5677–5681 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Floyd F. Snyder
    • 1
  • Trevor Lukey
    • 1
  1. 1.Pediatric Research Center, Alberta Children’s Hospital & Division of Pediatrics and Medical BiochemistryThe University of CalgaryCalgaryCanada

Personalised recommendations