Cyclic Nucleotide Levels and Mechanism of Inhibition of Leucocyte Function by Adenosine Deaminase Inhibition

  • Allen D. Meisel
  • Chandrasek Natarajan
  • Gary Sterba
  • Herbert S. Diamond
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 122B)


The association of adenosine deaminase (ADA) deficiency and severe combined immunodeficiency syndrome has focused attention upon purine metabolism as a modulator of the immune response (1–3). In in vitro studies, adenosine deaminase appears to be necessary for normal lymphocyte blastogenesis in response to phytomitogens and for mononuclear cell maturation (4–6). Various mechanisms of potential cellular toxicity have been proposed including accumulation of adenosine (4, 5), pyrmidine starvation (7, 8), accumulation of deoxyadenosine (9), inhibition of S-adenosylmethionine (SAM) dependent methylation reactions (10), and accumulation of intracellular cyclic AMP (4, 11).


Adenosine Deaminase Purine Metabolism Lymphocyte Blastogenesis Adenosine Deaminase Deficiency Cyclic Nucleotide Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. R. Giblett, J. E. Anderson, F. Cohen, B. Pollara, and H. J. Meuwissen, Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity, Lancet. 2:1067 (1972).PubMedCrossRefGoogle Scholar
  2. 2.
    C. R. Scott, S.-H Chen, and E. R. Giblett, Detection of the carrier state in combined immunodeficiency disease associated with adenosine deaminase deficiency. J. Clin. Invest. 53:1194 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Yount, P. Nichols, H. D. Ochs, S. P. Hammar, C. R. Scott, S.-H Chen, E. R. Giblett, and R. J. Wedgewood, Absence of erythrocyte adenosine deaminase associated with severe combined immunodeficiency, J. Pediatr. 84:173 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    D. A. Carson and J. E. Seegmiller, Effect of adenosine deaminase inhibition upon human lymphocyte blastogenesis, J. Clin. Invest. 57:274 (1976).PubMedCrossRefGoogle Scholar
  5. 5.
    F. F. Snyder, J. Mendelsohn, and J. E. Seegmiller, Adenosine metabolism in phytohemagglutinin-stimulated human lymphocytes, J. Clin. Invest. 58:654 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Fischer, M. B. Van der Weyden, R. Snyderman, and W. N. Kelley, A role for adenosine deaminase in human monocyte maturation, J. Clin. Invest. 58:399 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    H. Green, and T.-S Chan, Pyrmidine starvation induced by adenosine in fibroblasts and lymphoid cells: Role of adenosine deaminase, Science. 182:836 (1973).PubMedCrossRefGoogle Scholar
  8. 8.
    K. Ishii, and H. Green, Lethality of adenosine for cultured mammalian cells by interference with pyrmidine biosynthesis, J. Cell Sci. 13:429 (1973).PubMedGoogle Scholar
  9. 9.
    H. A. Simmonds, G. S. Panayi, and V. Corrigall, A role for purine metabolism in the immune response: Adenosine-deaminase activity and deoxyadenosine catabolism, Lancet. i:60 (1978).CrossRefGoogle Scholar
  10. 10.
    N. M. Kredich, and D. W. Martin, Jr., Role of S-adenosylhomocysteine in adenosine-mediated toxicity in cultured mouse T lymphoma cells, Cell, 12:931 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    G. Wolberg, T. P. Zimmerman, K. Hiemstra, M. Winston, and L.-C Chu, Adenosine inhibition of lymphocyte-mediated cytolysis; possible role of cyclic adenosine monophosphate, Science. 187:957 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    A. D. Meisel, C. Natarajan, G. Sterba, and H. S. Diamond, Effect of adenosine deaminase inhibition on leucocyte function, Clin. Res. 27:331A (1979).Google Scholar
  13. 13.
    A. Boyum, Separation of leukocytes from blood and bone marrow, Scand. J. Clin. Lab. Invest. 21:Suppl. 97, 77 (1968).Google Scholar
  14. 14.
    R. D. Nelson, P. G. Quie, and R. L. Simmons, Chemotaxis under agarose: A new and simple method for measuring Chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes, J. Immunol. 115:1650 (1975).PubMedGoogle Scholar
  15. 15.
    G. Marone, M. Plaut, and L. M. Lichtenstein, Characterization of a specific adenosine receptor on human lymphocytes, J. Immunol. 11:2153 (1978).Google Scholar
  16. 16.
    R. I. Lehrer, and M. J. Cline, Interaction of candida albicans with human leucocytes and serum, J. Bacteriol. 98:996 (1969).PubMedGoogle Scholar
  17. 17.
    I. Rivkin, J. Rosenblatt, and E. L. Becker, The role of cyclic AMP in the chemotactic responsiveness and spontaneous motility of rabbit peritoneal neutrophils, J. Immunol. 115:1126 (1975).PubMedGoogle Scholar
  18. 18.
    R. Anderson, A. Glover, and A. R. Rabson, The in vitro effects of histamine and metiamide on neutrophil motility and their relationship to intracellular cyclic nucleotide levels. J. Immunol. 118:1690 (1977).PubMedGoogle Scholar
  19. 19.
    C. G. Mills, F. C. Schmalstieg, K. B. Trimmer, A. S. Goldman, and R. M. Goldblum, Purine metabolism in adenosine deaminase deficiency, Proc. Natl. Acad. Sci USA, 73:2867 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    F. C. Schmalstieg, J. A. Nelson, G. C. Mills, T. M. Monahan, A. S. Goldman, and R. M. Goldblum, Increased purine nucleotides in adenosine deaminase-deficient lymphocytes, J. Pediatr. 91:48 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Allen D. Meisel
    • 1
  • Chandrasek Natarajan
    • 1
  • Gary Sterba
    • 1
  • Herbert S. Diamond
    • 1
  1. 1.State University of New York Downstate Medical CenterBrooklynUSA

Personalised recommendations