Methylmercaptopurine Ribonucleoside Toxicity in Human Fibroblasts: Inhibition of Phosphoribosylpyrophosphate Synthetase as Well as Amidophosphoribosyltransferase

  • Richard C. K. Yen
  • Michael A. Becker
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 122B)


Abundant evidence has been presented to indicate that phospho-ribosylpyrophosphate (PRPP) is the rate-limiting substrate for purine synthesis de novo (for review, see ref.1). Cultured cells derived from patients with purine overproduction have increased intracellular PRPP concentrations resulting from either increased PRPP synthesis or diminished PRPP utilization in alternative pathways (2–5). PRPP synthesis is catalyzed by PRPP synthetase (E.C. Several distinct superactive forms of this enzyme have been described in association with increased PRPP generation and increased rates of purine synthesis de novo (3–6). Among these mutant forms of PRPP synthetase are enzymes with: increased maximal velocity of the reaction but normal sensitivity to purine nucleotide inhibition of enzyme activity (7); normal maximal velocity but altered regulatory properties (3, 6); both altered catalytic and regulatory properties (8).


Normal Fibroblast Purine Base Purine Synthesis Fibroblast Strain Maximal Reaction Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.A. Becker, in Uric acid, Handbook of Experimental Pharmacology Vol. 51 (W.N. Kelley and I.M. Weiner, editors) Springer-Verlag Berlin 1978, p155.Google Scholar
  2. 2.
    F.M. Rosenbloom, J. F. Henderson, I.C. Caldwell, W.N. Kelley, and J.E. Seegmiller, J.Biol.Chem. 243:1166 (1968).PubMedGoogle Scholar
  3. 3.
    E. Zoref, A. de Vries, and O. Sperling, J.Clin.Invest. 56: 1093 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    M.A. Becker, J.J. Meyer, A.W. Wood, and J.E. Seegmiller, Science 179:1123 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    M.A. Becker, J.Clin.Invest. 57:308 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    O. Sperling, P. Boer, S. Persky-Brosh, E. Kanarek and A. de Vries, Rev.Eur.Etud.Clin.Biol. 17:703 (1972).PubMedGoogle Scholar
  7. 7.
    M.A. Becker, P.J. Kostel, and L.J. Meyer, J.Biol.Chem. 250: 6822 (1975).PubMedGoogle Scholar
  8. 8..
    M.A. Becker, K.O. Raivio, B. Bakay, W.B. Adams, and W.L. Nyhan, These proceedings.Google Scholar
  9. 9.
    C.D. Green, and D.W. Martin, Jr. Proc.Natl.Acad.Sci. 70: 3698 (1973).CrossRefGoogle Scholar
  10. 10.
    J.F. Henderson, and M.K.Y. Khoo, J.Biol.Chem. 240:3104 (1965).PubMedGoogle Scholar
  11. 11.
    E. Zoref, A. de Vries, O. Sperling, Hum.Hered. 27:73 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    K.O. Raivio, and J.E. Seegmiller, Biochim.Biophys.Acta 299: 283 (1973).PubMedCrossRefGoogle Scholar
  13. 13.
    P.S. Chen, T.Y. Toribara, and H. Warner, Anal.Chem. 28: 1756 (1956).CrossRefGoogle Scholar
  14. 14.
    M.S. Hershfield, F.F. Snyder, and J.E. Seegmiller, Science 197:1284 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    I.C. Caldwell, J.F. Henderson, and A.R.P. Paterson, Can.J. Biochem. 44:229 (1966).PubMedCrossRefGoogle Scholar
  16. 16.
    M.A. Becker, L.J. Meyer, and J.E. Seegmiller, Am.J.Med. 55: 232 (1973).PubMedCrossRefGoogle Scholar
  17. 17.
    G. Planet, and I.H. Fox, J.Biol.Chem. 251:5839 (1976).PubMedGoogle Scholar
  18. 18.
    M.S. Hershfield, and J.E. Seegmiller, Adv.Exp.Med.Biol. 76A:19 (1976).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Richard C. K. Yen
    • 1
    • 2
  • Michael A. Becker
    • 1
    • 2
  1. 1.Veterans Administration Medical CenterSan DiegoUSA
  2. 2.University of CaliforniaSan Diego, La JollaUSA

Personalised recommendations