Advertisement

Advanced Ozone Generation

  • U. Kogelschatz
Part of the Earlier Brown Boveri Symposia book series (EBBS)

Abstract

Ozone was discovered in 1839 by C.F. Schönbein who studied the electrolytic decomposition of water. It took more than two decades of vehement scientific dispute before the constitution of this new substance was clearly identified as a three-atomic molecule containing only oxygen, namely O3 (J.L. Soret 1865). About the same time in 1857, Werner von Siemens found out that ozone could also be generated in gas discharges and thus laid the foundations for modern industrial large-scale ozone production. This article will concentrate on the different aspects of ozone generation in gas discharges. Schönbein’s idea of generating ozone by electrolysis has led to the development of modern electrochemical ozone generators for special applications (cf. Stucki and Baumann).

Keywords

Ozone Concentration Discharge Voltage Ozone Formation Ozone Generation Ozone Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lunt, R.W., The mechanism of ozone formation in electrical discharges. Adv. Chemistry Series 21 (1959) 286–303.Google Scholar
  2. 2.
    “Ozon: Bildung und Zerfall auf elektrischem Wege” in Gmelin Handbuch der anorg. Chemie, Sauerstoff, Syst. Nr. 3, (Verlag Chemie GmbH, Weinheim) 1960, pp. 1038–1077.Google Scholar
  3. 3.
    Kogelschatz, U., Ozone synthesis in gas discharges. Proc. XVI Int. Conf. on Phenomena in Ionized Gases, Düsseldorf 1983, Invited papers, pp. 240–250.Google Scholar
  4. 4.
    Tanaka, M., Yagi, S., and Tabata, N., The observation of silent discharge by image intensifier. Trans. IEE of Japan 98 A (1978) 57–62.Google Scholar
  5. 5.
    Heuser, C., Zur Ozonerzeugung in elektrischen Gasentladungen (Ph.D.-Thesis, RWTH Aachen) 1985.Google Scholar
  6. 6.
    Hirth, M., Teilprozesse bei der Ozonerzeugung mittels stiller elektrischer Entladung. I. Die elektrische Entladung im Ozonisator. II. Die Ozon- und Stickoxydbildung im Ozonisator. Beitr. Plasmaphys. 20 (1981) 1–27.CrossRefGoogle Scholar
  7. 7.
    Hirth, M., Kogelschatz, U. and Eliasson, B., The structure of the microdischarges in ozonizers and their influence on the reaction kinetics. Proc. 6th Int. Symp. on Plasma Chemistry, Montreal 1983, pp. 663–668.Google Scholar
  8. 8.
    Mechtersheimer, G., Eliasson, B. and Kogelschatz, U., Polarity resolved measurements of the ozone production efficiency. Proc. XVIII Int. Conf. on Phenomena in Ionized Gases, Swansea 1987, pp. 522–523.Google Scholar
  9. 9.
    Dakin, T. W., Luxa, G., Oppermann, G., Vigreux, J., Wind, G. and Winkelnkemper, H., Breakdown of gases in uniform fields, Paschen curves for nitrogen, air and sulfur hexafluoride. Electra 32 (1974) 61–68.Google Scholar
  10. 10.
    Blair, D.T. A. and Whittington, H.W., Ionization and breakdown in oxygen. J. Phys. D: Appl. Phys. 8 (1975) 405–415.CrossRefGoogle Scholar
  11. 11.
    Shibuya, Y., Breakdown time lag of short gaps in various gases. Proc. 3rd Int. Conf. on Gas Discharges, London 1974, pp. 132–135 (IEE Conf. Publ. No. 118).Google Scholar
  12. 12.
    Bertein, H., Charges on insulators generated by breakdown of gas. J. Phys. D: Appl. Phys. 6 (1973) 1910–1916.CrossRefGoogle Scholar
  13. 13.
    Gibalov, V.I., Samoilovich, V.G. and Filippov, Yu.V., Physical chemistry of the electrosynthesis of ozone. The results of numerical experiments. Russ. J. Phys. Chem. 55 (1981) 471–479.Google Scholar
  14. 14.
    Eliasson, B., Hirth, M. and Kogelschatz, U., Ozone formation in dielectric-barrier discharges in oxygen. Proc. 7th Int. Symp. on Plasma Chemistry, Eindhoven 1985, pp. 339–344.Google Scholar
  15. 15.
    Peyrous, R., Numerical simulation of the production of neutral gaseous species created by electrical discharges in moist oxygen or air. Proc. 8th Int. Conf. on Gas Discharges and their Applications, Oxford 1985, pp. 489–492.Google Scholar
  16. 16.
    Eliasson, B., Hirth, M. and Kogelschatz, U., Ozone synthesis from oxygen in dielectric-barrier discharges. J. Phys. D: Appl. Phys. 20 (1987) 1421–1437.CrossRefGoogle Scholar
  17. 17.
    Yoshida, K. and Tagashira, H., Computer simulation of ozone electrosynthesis in an N2/O2 mixture-fed ozonizer. Memoirs of the Kitami Inst. of Technol. 18, 1 (1986) 11–20.Google Scholar
  18. 18.
    Yagi, S. and Tanaka, M., Mechanism of ozone generation in air-fed ozonizers. J. Phys. D: Appl. Phys. 12 (1979) 1509–1520.CrossRefGoogle Scholar
  19. 19.
    Fournier, G., Bonnet, J. and Pigache, D., Comparaison des propriétés macroscopiques des électrons soumis à l’action d’un champ électrique dans l’air sec et dans l’oxygène pur. C.R. Acad. Sc. Paris 290 (1980) B179-B182.Google Scholar
  20. 20.
    Penkin, N.P., Smirnov, V.V. and Tsygir, O.D., Investigation of the electrokinetic properties and of the dissociation of O2 molecules in an oxygen discharge. Sov. Phys. Techn. Phys. 27 (1982) 945–949.Google Scholar
  21. 21.
    Eliasson, B. and Kogelschatz, U., Electron impact dissociation in oxygen. J. Phys. B: At. Mol. Phys. 19 (1986) 1241–1247.CrossRefGoogle Scholar
  22. 22.
    Salge, J., Kaerner, H., Labrenz, M., Scheibe K. and Braumann, P., Characteristics of ozonizers supplied by fast rising voltages. Proc. 6th Int. Conf. on Gas Discharges and their Applications, Edinburgh 1980, pp. 94–97 (IEE Conf. Publ. No. 189).Google Scholar
  23. 23.
    Yamabe, C., Akiyama, H. and Horii, K., The improvement of ozone yield by the high frequency corona discharge superposed on the pre-ionization. Proc. 7th Int. Symp on Plasma Chemistry, Eindhoven 1985, pp. 327–332.Google Scholar
  24. 24.
    Masuda, S. and Koizumi, S., Production of ozone at cryogenic temperatures by glow discharge and high frequency surface discharge. Proc. 8th Int. Symp. on Plasma Chemistry, Tokyo 1987, pp. 769–774.Google Scholar
  25. 25.
    Yagi, S., Tanaka, M. and Tabata, N., Generation of NOx in ozonizers. Trans. IEE of Japan 99 (1979) 41–48.Google Scholar
  26. 26.
    Eliasson, B., Kogelschatz, U. and Baessler, P., Dissociation of O2 in N2/O2 mixtures. J. Phys. B: At. Mol. Phys. 17(1984) L797–L801.CrossRefGoogle Scholar
  27. 27.
    Eliasson, B. and Kogelschatz, U., N2O formation in ozonizers. J. Chim. Phys. 83 (1986) 279–282.Google Scholar
  28. 28.
    Samoilovich, V.G. and Gibalov, V.I., Kinetics of the synthesis of ozone and nitrogen oxides in a barrier discharge. Russ. J. Phys. Chem. 60 (1986) 1107–1116.Google Scholar
  29. 29.
    Okazaki, S., Kubo, S., Niwa, H., Kogoma, M., Sugimitsu, H., Moriwaki, T. and Inomata T., Ozone formation from the reactions of O2-activated N2 molecules and new type ozonizer with fine wire electrode. Proc. of the Symp. on Ozone + Ultra Violet Water Treatment, Aquatech, Amsterdam, 1986, pp. A.4.1-A.4.16.Google Scholar
  30. 30.
    Becke, Ch. and Maier, D., Nebenprodukte bei der Ozonerzeugung. Tagungsband Wasser Berlin ‘81. 5. Ozon-Weltkongress, Berlin 1981, pp. 860–874.Google Scholar
  31. 31.
    Gibalov, V.I., Samoilovich, V.G. and Wronski, M., Electrosynthesis of nitrogen oxides and ozone in an ozonizer. Proc. 7th Int. Symp. on Plasma Chemistry, Eindhoven 1985, pp. 401–406.Google Scholar
  32. 32.
    Samoilovich, V.G., Gibalov, V.I. and Wronski, M., The mechanism of nitrogen oxides and ozone electrosynthesis in ozonizer. Proc. XVII Int. Conf. on Phenomena in Ionized Gases, Budapest 1987, pp. 325–326.Google Scholar
  33. 33.
    Kogelschatz, U. and Baessler, P., Determination of nitrous oxide and dinitrogen pentoxid concentrations in the output of air-fed ozone generators of high power density. Ozone Sci. Eng. 9, 3 (1987) 195–206.CrossRefGoogle Scholar
  34. 34.
    Eliasson, B. and Kogelschatz, U., Nitrogen oxide formation in ozonizers. Proc. 8th Int. Symp. on Plasma Chemistry, Tokyo 1987, pp. 736–741.Google Scholar
  35. 35.
    Kubo, S., Kogoma, M., Inomata, T., Sugimitsu, H., Moriwaki, T. and Okazaki, S., Formation de Fozone par effet couronne sur une electrode très fine. J. Chim. Phys. 84, 1 (1987) 87–91.Google Scholar
  36. 36.
    Erni, P., Fischer, M. and Liechti, P., Large scale ozone production from oxygen: First experience with the Los Angeles Aqueduct Filtration Plant. Proc. 8th Ozone World Congress, Zürich 1987, pp. A19–A27.Google Scholar
  37. 37.
    Manley, T.C., The electrical characteristics of the ozone discharge. Trans. Electrochem. Soc. 84 (1943) 83–96.CrossRefGoogle Scholar
  38. 38.
    Samoilovich, V.G. and Filippov, Yu.V., Electrical theory of ozonizers VIII. Effect of frequency on the electrical characteristics of ozonizers. Russ. J. Phys. Chem. 35 (1961) 94–96.Google Scholar
  39. 39.
    Filippov, Yu.V. and Emel’yanov, Yu.M., The electrical theory of ozonizers V. The power factor of ozonizers. Russ. J. Phys. Chem. 33 (1959) 155–159.Google Scholar
  40. 40.
    Faes, Y., Ozoneurs: leurs théorie et application des techniques nouvelles à semi-conducteurs à leur alimentation. Rev. Gén. d’Electricité 84, 1 (1975) 13–23.Google Scholar
  41. 41.
    Tabata, N., High-frequency ozonizer driven by current impressed type inverter. Proc. 2nd Int. Symp. on Ozone Technology, Montreal 1975, pp. 120–131.Google Scholar
  42. 42.
    Mauersberger, K., Barnes, J., Hanson, D. and Morton, J., Measurement of the ozone absorption cross-section at the 253.7 nm mercury line. Geophys. Res. Lett. 13, 7 (1986) 671–673.CrossRefGoogle Scholar
  43. 43a.
    Molina, L.T. and Molina, M.J., Absolute absorption cross sections of ozone in the 185 to 350 nm wavelength range. J. Geophys. Res. 91, D 13 (1986)CrossRefGoogle Scholar
  44. 43b.
    Molina, L.T. and Molina, M.J., Absolute absorption cross sections of ozone in the 185 to 350 nm wavelength range. J. Geophys. Res. 91, (1986) 14.501–14.508.CrossRefGoogle Scholar
  45. 44.
    Masschelein, W.J., Methods for the control of ozone in a process gas. Ozone News 15, 4 (1987) 8–11 (Draft of the IOA European Standardisation Committee).Google Scholar
  46. 45.
    Sugimitsu, H. and Okazaki, S., Measurement of the rate of ozone formation in an ozonizer. J. Chim. Phys. 79 (1982) 655–660.Google Scholar
  47. 46.
    Fowles, M. and Wayne, R.P., Ozone monitor using an LED source. J. Phys. E: Sci. Instrum. 14 (1981) 1143–1145.CrossRefGoogle Scholar
  48. 47.
    Maier, D. and Kurzmann, G.E., “Determination of high ozone concentrations in air” in Analytical Aspects of Ozone Treatment of Water and Waste Water, by R.G. Rice, L J. Bollyky and W.L. Lacy, eds. (Lewis Publishers, Inc., Chelsea, MI, USA) 1986, pp. 271–292.Google Scholar
  49. 48.
    Monk, R.O.G., Yoshimura, R.Y., Hoover, M.G. and Lo, S.H., Prepurchasing ozone equipment. J. AWWA 77, 8 (1985) 49–54.Google Scholar
  50. 49.
    Emi, P. Fischer, M. and Klein, H.-P., Tonnage production of ozone for NOx-removal from flue-gas. Proc. 7th Ozone World Congress, Tokyo 1985, pp. 79–84.Google Scholar
  51. 50.
    Terrade, G., Drinking water treatment with ozone was born in Nice 80 years ago. Ozone News 14, 5 (1986) 13–16.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • U. Kogelschatz
    • 1
  1. 1.Brown BoveriBadenSwitzerland

Personalised recommendations