Advertisement

Reactor Design for Electrochemical Water Treatment

  • G. Kreysa
Part of the Earlier Brown Boveri Symposia book series (EBBS)

Abstract

Waste water containing toxic metal ions is produced in many industrial branches, such as electroplating, cellulose acetate production, photographic development, printed circuit and battery production. A classical process for purification of such metal containing waste water is neutralization combined with metal hydroxide precipitation. Stricter legal regulation of effluent pollution calls for new, reliable and cost-effective processes for the purification of waste water containing heavy metals. The maximum allowable metal concentrations of various metals in effluents and the minimum metal concentrations obtainable by hydroxide precipitation at pH 8 are listed in Table 1.

Keywords

Mass Transfer Coefficient Minimum Fluidization Velocity Turbulence Promoter Waste Water Purification High Mass Transfer Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Müller, K.-J. and Kreysa, G., Dechema-Monographien 98 (1985) 367.Google Scholar
  2. 2.
    Kammel, R. and Lieber, H.-W., Galvanotechnik 68 (1977) 413.Google Scholar
  3. 3.
    Kuhn, A.T., Chem. and Ind. (1971) 946.Google Scholar
  4. 4.
    Flett, D.S and Pearson, D., Chem. Ind. (1975) 639.Google Scholar
  5. 5.
    Kammel, R. and Lieber, H.-W., Galvanotechnik 68 (1977) 883.Google Scholar
  6. 6.
    Kammel, R. and Lieber, H.-W., Galvanotechnik 69 (1978) 317, 624.Google Scholar
  7. 7.
    Kuhn, A.T., Chem. Ind. (1978) 447.Google Scholar
  8. 8.
    Kreysa, G., Chem.-Ing.-Tech. 50 (1978) 332.CrossRefGoogle Scholar
  9. 9.
    Kreysa, G., Metalloberfläche 34 (1980) 494.Google Scholar
  10. 10.
    Fabjan, C., Oberfläche-Surface 21 (1980) 283.Google Scholar
  11. 11.
    Samhaber, W., Chem.-Ing.-Tech. 56 (1984) 246.CrossRefGoogle Scholar
  12. 12.
    Kreysa, G., J. Appl. Electrochem. 15 (1985) 175.CrossRefGoogle Scholar
  13. 13.
    Kreysa, G., Electrochim. Acta 26 (1981) 1693.CrossRefGoogle Scholar
  14. 14.
    Jansson, R.E.W. and Marshall, R.J., Chem. Engineer 315 (1976) 769.Google Scholar
  15. 15.
    Jansson, R.E.W. and Tomov, N.R., Chem. Engineer 327 (1977) 867.Google Scholar
  16. 16.
    Lopez-Cacicedo, C.L., The Inst. Chem. Engs. Symp. Ser. No. 42 (1975) 29.Google Scholar
  17. 17.
    Lopez-Cacicedo, C.L., Brit. Pat. 1423369 (1973).Google Scholar
  18. 18.
    Gabe, D.R., J. Appl. Electrochem. 4 (1974) 91.CrossRefGoogle Scholar
  19. 19.
    Holland, R.S., Chem. Ind. (1978) 453.Google Scholar
  20. 20.
    Ricci, L.J., Chem. Eng. (1975)29.Google Scholar
  21. 21.
    Kammel, R. and Lieber, H.-W., Galvanotechnik 69 (1978) 687.Google Scholar
  22. 22.
    Götzelmann, W., Galvanotechnik 70 (1979) 596.Google Scholar
  23. 23.
    Bruhn, D., Dietz, W., Müller, K.-J. and Reynvaan, C., EPA 86109265.8 (1986).Google Scholar
  24. 24.
    Storck, Α., Robertson, P.M. and Ibl, N., Electrochim. Acta 24 (1979) 373.CrossRefGoogle Scholar
  25. 25.
    Robertson, P.M., Schwager, F. and Ibl, N., J. Electroanal. Chem. 65 (1975) 883.CrossRefGoogle Scholar
  26. 26.
    Robertson, P.M. and Ibl, N., J. Appl. Electrochem. 7 (1977) 323.CrossRefGoogle Scholar
  27. 27.
    Robertson, P.M., Scholder, Β., Theis, G. and Ibl, Ν., Chem. Ind. (1978) 459.Google Scholar
  28. 28.
    Ibl, Ν. and Robertson, P.M., Chem.-Ing.-Tech. 48 (1976) 165.CrossRefGoogle Scholar
  29. 29.
    Keating, K.B. and Williams, J.M., Res. Rec. Conserv. 2 (1976) 39.Google Scholar
  30. 30.
    Bennion, D.N. and Newman, J., J. Appl. Electrochem. 2 (1972) 113.CrossRefGoogle Scholar
  31. 31.
    Carlson, G.A., Estep, E.E. and Jacqueau, D., Chem.-Ing.-Tech. 45 (1973) 217.CrossRefGoogle Scholar
  32. 32.
    Wenger, R.S. and Bennion, D.N., J. Appl. Electrochem. 6 (1976) 385.CrossRefGoogle Scholar
  33. 33.
    Van Zee, J. and Newman, J., J. Electrochem. Soc. 124 (1977) 706.CrossRefGoogle Scholar
  34. 34.
    Advertising information of ELTECH Electroresearch S.A., Genève.Google Scholar
  35. 35.
    Kreysa, G., Chem.-Ing.-Tech. 55 (1983) 23.CrossRefGoogle Scholar
  36. 36.
    Kreysa, G. and Reynvaan, C., J. Appl. Electrochem. 12 (1982) 241.CrossRefGoogle Scholar
  37. 37.
    Kreysa, G., DE 26 497 (1976).Google Scholar
  38. 37a.
    Kreysa, G., DE 22 497 (1976).CrossRefGoogle Scholar
  39. 38.
    Backhurst, J.R., Coulson, J.M., Goodridge, F., Plimley, R.E. and Fleischmann, M., J. Electrochem. Soc. 116 (1969) 1600.CrossRefGoogle Scholar
  40. 39.
    Backhurst, J.R., Fleischmann, M., Goodridge, F. and Plimley, R.E., GB Pat. 1 181 (1970).Google Scholar
  41. 39a.
    Backhurst, J.R., Fleischmann, M., Goodridge, F. and Plimley, R.E., GB Pat. 194 181 (1970).Google Scholar
  42. 40.
    Scharf, H., DE 22 084 (1972).Google Scholar
  43. 40a.
    Scharf, H., DE 27 084 (1972).Google Scholar
  44. 41.
    Raats, C., Boon, H. and Eveleens, W., Erzmetall 30 (1977) 365.Google Scholar
  45. 42.
    v. Heiden, G., Raats, C. and Boon, H., Chem. Ind. (1978) 465.Google Scholar
  46. 43.
    Beck, F. and Guthke, H., Chem.-Ing.-Tech. 41 (1969) 943.CrossRefGoogle Scholar
  47. 44.
    Kreysa, G., Pionteck, S. and Heitz, E., J. Appl. Electrochem. 5 (1975) 305.CrossRefGoogle Scholar
  48. 45.
    W.C. Heraeus GmbH, advertising material, ACHEMA (1979).Google Scholar
  49. 46.
    Sioda, R.E., J. Electroanal. Chem. 34 (1972) 399.CrossRefGoogle Scholar
  50. 47.
    Sioda, R.E., Electrochim. Acta 16 (1971) 1569.CrossRefGoogle Scholar
  51. 48.
    Robertson, P.M., Electrochim. Acta 22 (1977) 411.CrossRefGoogle Scholar
  52. 49.
    Gallone, P., De Anna, P.L. and Bonora, P.L., Materials Chemistry 3 (1978) 285.CrossRefGoogle Scholar
  53. 50.
    Newman, J.S., Tobias, C.W., J. Electrochem. Soc. 109 (1962) 1183.Google Scholar
  54. 51.
    Chu, A.K.P. and Fleischmann, M., Hills, G.J., J. Appl. Electrochem. 4 (1974) 323.CrossRefGoogle Scholar
  55. 52.
    Alkire, R. and Ng, P.K., J. Electrochem. Soc. 121 (1974) 95.CrossRefGoogle Scholar
  56. 53.
    Bennion, D.N., J. Appl. Electrochem. 2 (1972) 113.CrossRefGoogle Scholar
  57. 54.
    Trainham, J.A. and Newman, J., J. Electrochem. Soc. 124 (1977) 1528.CrossRefGoogle Scholar
  58. 55.
    Flett, D.S., Chem. Ind. (1971) 300.Google Scholar
  59. 56.
    Flett, D.S., Chem. Ind. (1972) 983.Google Scholar
  60. 57.
    Steppke, H.-D. and Kammel, R., Erzmetall 26 (1973) 533.Google Scholar
  61. 58.
    Monhemius, A.J. and Costa, P.L.N., Hydrometallurgy 1 (1975) 183.CrossRefGoogle Scholar
  62. 59.
    Kreysa, G., Erzmetall 28 (1975) 440.Google Scholar
  63. 60.
    Flett, D.S. and Pearson, D., Chem. and Ind. (1975) 639.Google Scholar
  64. 61.
    Germain, S. and Goodridge, F., Electrochim. Acta 21 (1976) 545.CrossRefGoogle Scholar
  65. 62.
    Hutin, D. and Coeuret, F., J. Appl. Electrochem. 7 (1977) 463.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • G. Kreysa
    • 1
  1. 1.Dechema InstitutFrankfurtWest Germany

Personalised recommendations