Ozone in Water Treatment Processes

  • H.-P. Klein
Part of the Earlier Brown Boveri Symposia book series (EBBS)


Today, the quality of raw water is deteriorating due to excessive exploitation and pollution. Special treatment of drinking water as well as of waste water is therefore necessary. Reclamation of waste water for irrigation purposes and ground water reinjection are of vital importance for large areas of the world. As a consequence, the treatment technologies for water have to be adapted to these new requirements. Under these conditions ozonation has gained more importance as a versatile water treatment process. It is especially useful in securing better drinking water even under difficult conditions and in improving waste-water quality. In the industrial sector, the increasing quality demands on ultrapure water for pharmaceutical and electronics production can be fulfilled by application of ozone.


Ozone Concentration Bubble Column Pressure Swing Adsorption Ozone Treatment Ozone Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gaia, F. and Menth, A., New High-Power Ozone Generators and their Application in Industry. Ozone Sci. Eng. 4 (1982) 207–214.CrossRefGoogle Scholar
  2. 2.
    Klein, H.-P. and Steiner, H.P., Ozon in der Trinkwasseraufbereitung. Brunnenbau, Bau von Wasserwerken, Rohrleitungsbau (bbr) 36 (1985) 186–193.Google Scholar
  3. 3.
    Fischer, M., Klein, H.-P., Liechti, P.A. and Dyer-Smith, P., Technical and economical advantages of producing and applying ozone at high concentrations. Ozone Sci. Eng. 9 (1987) 93–108.CrossRefGoogle Scholar
  4. 4.
    Riquarts, H.-P. and Leitgeb, P., Gastrennung mit Druckwechsel-Adsorptionsanlagen. Chem.-Ing.-Techn. 57 (1985) 843–849.CrossRefGoogle Scholar
  5. 5.
    Dyer-Smith, P. and Jaisli, E., Economical large-scale production of ozone and its practical application. Brown Boveri Review 72 (1985) 372–375.Google Scholar
  6. 6.
    Kogelschatz, U. and Bässler, P., Quantitative Angaben zum N2O- und N2O5-Ausstoss moderner Hochleistungsozonisatoren bei der Ozonerzeugung aus Luft. bbr 36 (1985) 453–456.Google Scholar
  7. 7.
    Becke, Ch. and Maier, D., Herkunft von Trichlornitromethan in Trinkwasser. Vom Wasser 62 (1984) 125–135.Google Scholar
  8. 8.
    Becke, Ch. and Maier, D., Die Rolle der Stickoxide bei der Wasseraufbereitung mit Ozon. Vom Wasser 59 (1982) 269–276.Google Scholar
  9. 9.
    Geering, F., Experiences with ozone treatment of water in Switzerland. Proc. 8th Ozone World Congress, Sept. 1987, Zürich. International Ozone Association (IOA). (Unionsverlag, Zürich) 1987, Vol. 1, pp. B59–75.Google Scholar
  10. 10.
    Stucki, S., Theis, G., Kötz, R., Devantay, H. and Christen, H.J., In situ production of ozone in water using a Membrel electrolyzer. J. Electrochem. Soc.: Electrochem. Sci. Techn. (1985) 367–371.Google Scholar
  11. 11.
    Vogel, L. and Klein, H.-P., Ozone generation by means of Membrel electrolysis: a process for treating ultrapure water. Brown Boveri Review 73 (1986) 451–456.Google Scholar
  12. 12.
    Setz, W., Erfahrung mit einer Verfahrenskombination “Umkehrosmose/Kontinuierlicher Ionenaustauscher” zur Herstellung von Wasser für pharmazeutische Zwecke. Pharm. Ind. 47 (1985) 3–11.Google Scholar
  13. 13a.
    Hoigné, J. and Bader, H., Rate constants of reactions of ozone with organic and inorganic compounds in water. Part I: Non-dissociating organic compounds. Water Res. 17 (1983) 173–183.CrossRefGoogle Scholar
  14. 13b.
    Hoigné, J. and Bader, H., Rate constants of reactions of ozone with organic and inorganic compounds in water. Part II: Dissociating organic compounds. Water Res. 17 (1983) 1985–1995.Google Scholar
  15. 13c.
    Hoigné, J. and Bader, H., Rate constants of reactions of ozone with organic and inorganic compounds in water. Part III: Inorganic compounds and radicals. Water Res. 19 (1985) 993–1004.CrossRefGoogle Scholar
  16. 14.
    Sontheimer, H., Heilker, E., Jekel, M.R., Nolte, H. and Vollmer F.A., The Müllheim process. J. AWWA 70 (1978) 393–396.Google Scholar
  17. 15.
    Rice, R.G., Rationales for multiple stage ozonation in drinking water treatment plants. Ozone Sci. Eng. 9 (1987) 37–62.CrossRefGoogle Scholar
  18. 16.
    Schalekamp, M., Raw water quality and water treatment. Zbl. Bakt. Hyg. I Abt. Orig. B 172 (1980) 156–180.Google Scholar
  19. 17.
    Maier, D., Mikroflockung durch Ozon. Paper presented at the Conf. on “Oxidationsverfahren in der Trinkwasseraufbereitung”, Karlsruhe, FRG, Sept. 11–13, 1978. W. Kühn, H. Sontheimer, eds. (Karlsruhe) 1979, pp. 417–441.Google Scholar
  20. 18.
    Jekel, M., Ozone for microflocculation. DVGW Schriften Wasser 42 (1985) 137–143.Google Scholar
  21. 19.
    Jekel, M., Einfluss von natürlichen organischen Stoffen auf die Kolloidstabilität von praktikularen Substanzen. Bd. 20 der Veröffentlichung des Bereichs Wasserchemie Karlsruhe. H. Sontheimer, ed. (ZfGW-Verlag, Frankfurt) 1982, pp. 287–300.Google Scholar
  22. 20.
    Sontheimer, H., Trends in ozonation (Roundtable Discussion). J.AWWA (1985) 30.Google Scholar
  23. 21.
    Stolarik, G.F., Ozonation and the direct filtration process. Paper presented at American Water Works Association, California — Nevada section. Fall Conf. Oct. 28–30, 1981, Palm Springs, CA.Google Scholar
  24. 22.
    Glaze, W.H., Reaction products of ozone: A review. Environmental Health Perspectives 69 (1986) 151–157.CrossRefGoogle Scholar
  25. 23.
    van Hoof, F., Janssens, J.G. and Van Dijck, H., Formation of mutagenic activity during surface water preozonation and its removal in drinking water treatment Chemosphere 14 (1985) 501–509.Google Scholar
  26. 24.
    Medley, D.R. and Stover, E.L., Effects of ozone on the biodegradability of biorefractory pollutants. J. WPCF 55 (1983) 489–494.Google Scholar
  27. 25.
    Nagel, G., Kühn, W., Werner, P. and Sontheimer H., Grundwassersanierung durch Infiltration von ozontem Wasser. gwf-Wasser/Abwasser 123 (1982) 399–407.Google Scholar
  28. 26.
    Design Manual: Municipial Wastewater Disinfection EQP-Report EPPA/625/1–86/021 Oct. 1986, Chapter 6, pp. 97–155. US Environmental Protection Agency, ed. Office of Research and Development. Water Engineering Research Laboratory Center for Environm. Res. Information. Cincinnati, OH 45 268.Google Scholar
  29. 27.
    Merrill, D.T., Parker, D.S. and Drago, J.A., Evaluation of ozone treatment in cooling towers. Proc. 35th Industrial Waste Conf. 1980, pp. 307–315.Google Scholar
  30. 28.
    Siegrist, H.W., Tuttle, D.G. and Majumdar, S.B., Technical and economic considerations of biocide system options for cooling water systems; A review. Proc. 2nd Intern. Symp. on Ozone Technology held at Montreal, Canada, May 11–14, 1975. R.G. Rice, P. Pichet and M.-A. Vincent, eds. pp. 632–649.Google Scholar
  31. 29.
    Leitzke, O. and Greiner G., Wasserbehandlung in Rückkühlkreisläufen mit Ozon. Vom Wasser 67 (1986) 49–58.Google Scholar
  32. 30.
    Baker, R. and Taylor, F.M., Oxidation of 2 propanol in dilute aqueous solution by UV/ozone. Proc. Intern. Conf.: The Role of Ozone in Water and Waste Water Treatment. R. Perry and A.E. McIntyre, eds. London 13–14 Nov. 1985. pp. 106–116.Google Scholar
  33. 31.
    Lozier, J.C. and Sierka, R.A., Using ozone and ultrasound to reduce RO membrane fouling. J. AWWA 77 (1985) 60–65.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • H.-P. Klein
    • 1
  1. 1.Brown BoveriZürichSwitzerland

Personalised recommendations