Neuroendocrine Control in the Thermal Stress

  • Vojislav M. Petrović
Part of the Biochemical Endocrinology book series (BIOEND)


Stress may be defined in terms of any adjustment directed towards a reestablishment of internal homeo-stasis (Ganong, 1980). Starting from Selye’s terminology, stress might be defined as such a type of response in which an increased ACTH secretion occurs (see Axelrod, 19 80). However, the increased ACTH secretion and consequently an increased adrenocortical activity was also found in intensive muscular activity and swimming. In such a kind of activity if muscular work is not very intensive, the typical stress reaction of pituitary-adrenocortical system does not occur. Thus, it was suggested that at the present time a quantitative criteria for stress rather than a qualitative, should be used (Kozlowsski, 1980). Having in mind all available data about stress it seems necessary that the kind of stressor, used by different authors in order to provoke stress in laboratory animals, should be well defined. So the character and magnitude of the response to stress should be better understood.


Tyrosine Hydroxylase Thyroid Stimulate Hormone Brown Adipose Tissue Ground Squirrel Cold Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelrod, I., 1980, Catecholamines and stress: A brief informal history, in: “Catecholamines and Stress-Recent Advances”, E. Usdin, R. Kventnansky and I.J. Kopin eds., Elxevier/North-Holland, Amsterdam, pp. 3–5.Google Scholar
  2. Beley, A., Beley, P., Rochette, L. and Bralet, J., 1977, Time dependent changes in the rat of noradrenaline synthesis in various rat brain areas during cold exposure, Pflügers Arch., 368: 225–229.PubMedCrossRefGoogle Scholar
  3. Bertin, R., 1969, Pharmacodinamie — Teneurs surrennaliéne et plasmatique en corticostérone chez le rat adapté a diverse temperatures, C.R.Soc.Biol., 1963: 2108–2112.Google Scholar
  4. Bligh, J., Cottle W.H. and Maskrey, M., 1971, Influence of ambient temperature on the thermoregulatory response to 5-hydroxytryptamine, noradrenaline and acetylcholine injected into the lateral cerebral ventricles of sheep, goats and rabbits, J.Physiol., 212: 377–392.PubMedGoogle Scholar
  5. Boulouard, R., 1966, Adrenocortical activity during adaption to cold in the rat: role of Porter-Silber chromogens, Fed. Proc., 25: 1195–1199.PubMedGoogle Scholar
  6. Chaffee, R.R. and Roberts, J.C., 1971, Temperature acclimation in birds and mammals, Ann.Rev.Physiol., 33: 155–203.CrossRefGoogle Scholar
  7. Chap, Z., Bedrak, E. and Sod-Moriah, A., 1977, Effect of heat acclimation on testicular enzymes involved in androgen biosynthesis via the 5-ene pathway, Austr.J.Biol.Sci., 30: 85–95.Google Scholar
  8. Chowers, J., Conforti, N. and Feldman, S., 19 72, Body temperature and adrenal function in cold-exposed hypothalamic disconnected rats. Am.J.Physiol., 223: 341–345.Google Scholar
  9. Christison, G.I. and Johnson, H.D., 1972, Cortisol turnover in heat-stressed cows, J.Animal Sci., 35: 1005–1010.Google Scholar
  10. Christison, G.I., Mitra, R. and Johnson, H.D., 1970, Glucocorticoids in acutely heat stressed steers, J.Animal Sci., 31: 219–220.Google Scholar
  11. D’Angelo, S.A., 1960, Hypothalamus and endocrine function in persistent oestrus rats at low environmental temperature, Am. J.Physiol., 199: 701–706.PubMedGoogle Scholar
  12. Dupont, A., Bastarache, E., Endröczi, E. and Fortier, C., 1972, Effect of hippocampal stimulation on plasma thyrotropin (TSH) and corticosterone responses to acute cold exposure in the rat, Can.J.Physiol. Pharmacol., 50: 364–367.PubMedCrossRefGoogle Scholar
  13. Endröczi, E. and Lissak, K., 1962, Interrelations between palaco-cortical activity and pituitary-adrenocortical function, Acta Physiol. Acad. Sci. Hung., 21: 257–263.Google Scholar
  14. Fortier, C., 1966, Nervous control of adrenocorticotrophic hormone secretion, in: “The Pituitary Gland”, G.W. Harris and B.T. Donovan, eds., Butterworth, London, pp. 195–234.Google Scholar
  15. Gale, C.C., 1973, Neuroendocrine aspects of thermoregulation, Ann. Rev. Physiol., 35: 391–430.CrossRefGoogle Scholar
  16. Ganong, W.F., 1974, The role of catecholamines and acetylcholine in the regulation of endocrine function, Life Sci., 15: 1401–1414.PubMedCrossRefGoogle Scholar
  17. Ganong, W.F., 1980, Participation of brain monoamines in the regulation of neuroendocrine activity under stress, in: “Catecholamines and Stress; Recent Advances”, E. Usdin, R. Kventnansky and I. J. Koppin, eds., Elsevier/North-Holland, Amsterdam, pp. 115–124.Google Scholar
  18. Hefco, E., Krulich, L., Illner, P. and Larsen, P.R., 1975, Effect of acute exposure to cold on the activity of the hypothalamic-pituitary-thyroid system, Endocrinology, 95: 1185–1195.CrossRefGoogle Scholar
  19. Henry, H.P. and Stephens, P.M., 1977, “Stress, Health and the Social Environment”, Springer Verlag, New York, pp. 1–282.Google Scholar
  20. Heroux, O. and Petrović, V.M., 1969, Effect of hight and low bulk diets on the thyroxine turnover rate in rats acute and chronic exposure to different temperatures, Can.J.Physiol.Pharmacol., 47: 963–968.PubMedCrossRefGoogle Scholar
  21. Himms-Hagen, J., 1969, The role of brown adipose tissue in the calorigenic effect of adrenaline and noradrenaline in cold acclimated rats, J.Physiol., 205: 393–404.PubMedGoogle Scholar
  22. Himms-Hagen, J., 1970, Regulation of metabolic processes in brown adipose tissue in relation to nonshivering thermogenesis, Adv.Enzyme Regulation, 8: 131–142.CrossRefGoogle Scholar
  23. Itoh, S., Hiroshige, T., Koseki, T. and Nakotsugawa, T., 1969, Release of thyrotropin in relation to cold exposire, Fed. Proc., 25: 1187–1192.Google Scholar
  24. Jansky, L., Mejsnar, J. and Moravec, J., 1976, Catecholamines and cold stress, in: “Catecholamines and Stress, — Recent Progress”, E, Usdin, R, Kvetnasky and I. J. Kopin, eds., Pergamon Press, Oxford, 419–434.Google Scholar
  25. Johnson, H.D., 1976, Effect of heat on endocrine responses of domestic and laboratory animals, in: “Progress in Biometeorology”, S.W. Tromp ed., Swets and Zeitlinger, B.V., Amsterdam, pp. 27–32.Google Scholar
  26. Katby, S. and Johnson, H.D., 1967, Rat adrenal cortical activity during exposure to a high (34°C) ambient temperature Life Sci., 6: 1121.CrossRefGoogle Scholar
  27. Kawakami, M., Seto, R., Terasawa, E., Yoshida, K., Miyamoto, T. and Hattatori, Y., 1968, Influence of electiral stimulation and lesion in limbic structure upon biosynthesis of adrenocorticoids in the rabbit, Neuroendocrinology, 3: 337–348.PubMedCrossRefGoogle Scholar
  28. Knigge, K.M., 1960, Neuroendocrine mechanisms influencing ACTH and TSH secretion and their role in acclimation, Fed.Proc., 19: 45–51.PubMedGoogle Scholar
  29. Kozlowski, S., 1980, Panel discussion on stress theory, in: “Catecholamines and Stress; Recent Advances”, E. Usdin, R. Kvetnansky and I.J. Kopin eds, Elsevier/North-Holland, Amsterdam, pp. 583–584.Google Scholar
  30. Kraicer, J., Elliot, N.L. and Zimmerman, A.E., 1978, In vitro release of ACTH from dispersed rat Parts intermedia cells. III. Multiple forms of ACTH biological activity, Neuroendocrinology, 27; 86–96.PubMedCrossRefGoogle Scholar
  31. Kraicer, J., Zimmerman, A.E., and Moor, B.C., 1980, Role of biogenic amines in the control of secretion of pars intermedia ACTH and related peptides, in: “Catecholamines and Stress — Recent Advances”, E. Usdin, R. Kvetnansky, and I.J. Kopin, eds, Elsevier/North Holland/Amsterdam, pp. 131–136.Google Scholar
  32. Krieger, D.T., Liotta, A., and Brownstein, M.J., 1977, Corticotropin releasing factor. Distribution in normal and brattleboro rat brain and effect of differentiation hypophysectomy and steroid treatment in normal animals, Endocrinology, 100: 227–237.PubMedCrossRefGoogle Scholar
  33. Kvetnansky, R., 1973, Frontiers in Catecholamine Research, E. Usdin and Snyder, S. eds., Pergamon Press, Oxford, pp. 223–229.Google Scholar
  34. Kvetnansky, R., 1980, Recent progress in catecholaminess under stress, in: Catecholamines and Stress: Recent Advances, E. Usdin, R. Kvetnansky and I.J. Kopin, eds., Elsevier/North-Holland, Amsterdam, pp. 7–18.Google Scholar
  35. Kvetnsky, R., Gewirtz, G.P., Weise, V.K. and Kopin, I.J., 1971, Catecholamine-synthesizing enzymes in the rat adrenal gland during exposure to cold. Am. J.Physiol., 220: 928–931.Google Scholar
  36. Kvetnansky, R. and Mikulaj, L., 1970, Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress, Endocrinology, 87: 738–743.PubMedCrossRefGoogle Scholar
  37. Kventnansky, R., Palkovits, M., Mitro, A., Torda, T. and Mikulaj, L., 1977, Catecholamines in individual hypothalamic nuclei of acutely and repeatedly stressed rats, Neuroendocrinology, 23: 257–267.CrossRefGoogle Scholar
  38. Kvetnansky, R., Sun, C.L., Lake, C.R., Thoa, N., Torda, T. and Kopin, I.J., 1978, Effect of handling and forced levels of epinenphrine, norepinephrine and dopamine β hydroxalase, Endocrinology, 103: 1868–1874.PubMedCrossRefGoogle Scholar
  39. Lechiver, F. and Petrović, V.M., 1960, Activité thyroidienne comparée de deux hibernants: le lerot (Elliomys quercinus) et le Spermophile (Citellus citellus) et d’un homeotherme, le rat au cours de l’exposition au froid pendant l’été, C.R.Acad.Sci. (Paris), 250: 3883–3885.Google Scholar
  40. LeBlanc, J., 1976, The role of catecholamines in adaptation to chronic and acute stress, in: “Catecholamines and Stress”, E. Usdin, R. Kvetnansky and I.J. Kopin, eds., Pergamon Press, Oxford, pp. 409–418.Google Scholar
  41. LeBlanc, J., Roberge, C., Vallières, J. and Oakson, G., 1971, The sympathetic nervous system in short term adaptation to cold, Can, J.Physiol.Pharmacol., 49: 96–101.CrossRefGoogle Scholar
  42. Leduc, J., 1961, Excretion of catecholamines in rats exposed to cold, Acta Physiol.Scand., 51: 94–101.PubMedCrossRefGoogle Scholar
  43. Macari, M., Dauncey, M.J., Ramsden, D.B. and Ingram, D. L., 1983, Thyroid hormone metabolism after acclimatization to a warm or cold temperature under conditions of high or low energy intake. Quart. J. Exp.Physiol., 68: 709–718.Google Scholar
  44. Mejsnar, J., and Jansky, L., 1971, Methods for estimating of nonshivering thermogenesis, in: “Nonshivering thermogenesis,” L. Jansky, ed., Academia, Prague, pp. 27–36.Google Scholar
  45. Mikulaj, L., Kvetnansky, R., Murgas, R., Parizkova, J. and Vancel, P., 1976, Thoa1 in: “Catecholamines and Stress”, E. Usdin, R. Kvetnansky and I.J. Kopin, eds., Pergamon Press, Oxford, pp. 445–455.Google Scholar
  46. Mitra, R. and Johnson, H.D., 1972, Growth hormone rasponse to cute thermal exposure in cattle, Proc.Soc.exp.Biol., 139: 1086–1089.PubMedGoogle Scholar
  47. Myers, R.D. and Yaksh, T.L., 1969, Control of body temperature in the unanasthetized monkey by cholinergic and aminergic systems in the hypothalamus, J.Physiol., 202: 483–500.PubMedGoogle Scholar
  48. Palkovits, M., Kabayashi, R.M., Kizer, J.S., Jacobowitz, D.M. and Kopin, I.J., 1975, Effects of stress on catecholamines and tyrosine hydroxylase activity of individual hypothalamic nuclei, Neuroendocrinology, 18: 144–153.PubMedCrossRefGoogle Scholar
  49. Palkovits, M., Mezey, E. and Feminger, A., 1980, Neuro-anatomical basis for the activation of brain monoergic system under stress, in.: “Catecholamines and Stress; Recent Advances”, E. Usdin, R. Kvetnansky and I.J. Kopin, eds, Elsevier/North-Holland, Amsterdam, pp. 21–29.Google Scholar
  50. Petrović, V.M., 1976, Effects of acute and chronic exposure to cold on the endocrine system of laboratory animals, in: “Progress in Biometeorology, S.W. Tromp, ed., Swets and Zeitlinger, B.V., pp. 42–48.Google Scholar
  51. Petrović, V.M. and Andjus, R.K., 1960, Métabolisme de base et adaptation therqmique du rat; role de la thyroide et des surrénales, J.Physiol., (Paris), 52: 191–192.Google Scholar
  52. Petrović, V.M., Andjus, R.K. and Dukić, S., 1961, Role de la thyroid et des surrénales dans l’adaptation thermique du rat, Arch.Biol.Sci. (Beograd), 13: 7–20.Google Scholar
  53. Petrović, V.M., Davidović, V. and Janić-Šibalić, V., 1976, Catecholamine synthesis, release and excretion and adrenocortical activity in the heat-stressed rat, in: “Catecholamines and Stress”, E. sdin, R. Kvetnansky and I.J. Kopin, eds., Pergamon Press, Oxford, pp. 437–433.Google Scholar
  54. Petrović, V.M. and Janić, V., 1964, Comparative study of the effect of cold on 17, 21 hydroxi-20-ketosteroids and adrenal ascorbic acid in the rats and ground squirrels, Arch. Biol.Sci., 16: 145–153.Google Scholar
  55. Petrović, V.M. and Janić-Šibalić, Vera, 1976, Adrenocortical control of phynylethanolamine-N-methyl transferase and monoamine oxidase activity in the ground squirrel (Citellus citellus) during the summer, Gen.Comp.Endocrinol. 29: 492–497.PubMedCrossRefGoogle Scholar
  56. Petrović, V.M. and Janić-Šibalić, V., 1977, Regulation of adrenal catecholamine synthesis in the ground squirrel (Citellus citellus), Bull. Acad.Serbe Sci., 60: 83–89.Google Scholar
  57. Petrović, V.M. and Janić-Šibalić, V., 1978, Effect of corticotropin and dexamethasone on monoamine oxidase activity in the rat brain, Bull.Acad.Serbe Sci., 61: 1–4.Google Scholar
  58. Petrović, V.M. and Janić-Šibalić, V., 1980, Catecholamine synthesizing and degrading enzymes in the heat stressed or adapted rats, in: “Catecholamines and Stress”, E. Usdin, R. Kvetnansky and I.J. Kopin, eds., Elsevier/North Holland, Amsterdam, pp. 365–370.Google Scholar
  59. Petrović, V.M., Janić-Šibalić, V., Aminot, A. and Roffi, J., 1978, Adrenal thyrozine hydroxilase activity in the ground squirrel-effect of cold and arousal from hibernation, Comp.Biochem.Physiol., 61C: 99–101.Google Scholar
  60. Petrović, V.M., Janić-Šibalić, V. and Cvijić, G., 1981, Adrenocortical activity and catecholamines synthesizing and degrading enzymes in the ground squirrel exposed to cold or aroused from hibernation, Acta Universitas Caroline-Biologica (Prague), 245–248.Google Scholar
  61. Petrović, V.M., Janić-Šibalić, V. and Cvijić, G., 1984, Effect of dexamethasone on catecholamines biosynthesis in the brain regions of the rat, Proc. Meeting Yugoslav End. Soc. (in press).Google Scholar
  62. Petrović, V.M., Janić, V. and Dukić, S., 1964, L’action du froid sur l’activité corticosurrénalienne chez le spermophile, J.Physiol., 56: 631–632.Google Scholar
  63. Petrović, V.M., Maksimović, K., 1979, Adaptation to cold and diurnal fluctuation of the sensitivity to noradrenaline in the rat, Bull.Acad.Serbe Sci. (Belgrade), 66: 81–86.Google Scholar
  64. Petrović, V.M. and Marković-Djaja, L., 1973, A comparative study of the calorigenic action of noradrenaline in the rat and ground squirrel adapted to different temperatures, Experientia, 29: 1295–1296.PubMedCrossRefGoogle Scholar
  65. Petrović, V.M. and Rajčić, O., 1969, Effect of prolonged cold exposure and ACTH administration on RNA, DNA and protein content in adrenals and liver of rat and ground squirrel, Fed.Proc., 28: 1247–1250.PubMedGoogle Scholar
  66. Petrović, V.M., Rajčić, O., Hudnik-Plevnik, T., 1966, Étude comparée de l’action du froid et de l’ACTH, sur le taux des acides nucléiques et de proteins dans la surrénale et dans le foie chez le rat et le spermophile, J.Physiol. (Paris), 58–590–591.Google Scholar
  67. Schoenbaum, E., 1960, Adrenocortical function in rats exposed to low environmental temperatures, Fed.Proc., 19: 85–88.Google Scholar
  68. Sellers, E.A., Steiner, G., Flattery, R.V., Shum, A., Johnson, G.E. and Schönbaum, E., 1971, Activity of the sympathetic nervous system during cold exposure, in: “Nonshivering Thermogenesis”, L. Jansky, ed., Academia, Prague, pp. 271–279.Google Scholar
  69. Simmonds, M.A., 1969, Effect of environmental temperature on the turnover of noradrenaline in hypothalamus and other areas of rat brain, J.Physiol., 203, 199–210.PubMedGoogle Scholar
  70. Simmonds, M.A., 1970, Effect of environmental temperature on the turnover of 5-hydroxytryptamine in various areas of rat brain, J.Physiol., 211: 93–108.PubMedGoogle Scholar
  71. Storm, H., Hardelveld E. and, Kassenaar, A.A.H., 1981, Thyroid hormone-catecholamine interrelationship during exposure to cold, Acta Endocrinologica, 97: 91–97.PubMedGoogle Scholar
  72. Suttanov, F.F., 1976, Catecholamines and heat stress, in: “Catecholamines and Stress”, E. Usdin, R. Kvetnansky and I.J. Kopin, eds, Pergamon Press, Oxford, pp. 435.Google Scholar
  73. Vigaš, M., 1980, Contribution to the understanding of the stress concept, in: “Catecholamines and Stress; Recent Advances”, E. Usdin, R. Kvetnansky and I.J. Kopin, eds., Elsevier/North-Holland, Amsterdam pp. 573–578.Google Scholar
  74. Weiner, R.I. and Canong, W.F., 1978, Role of brain monoamines and histamine in regulation of anterior pituitary secretion, Physiol.Rev., 58: 905–959.PubMedGoogle Scholar
  75. Zeisberger, E. and Brück, R., 1973, Effect of intrahypo-thalamically injected noradrenergic and cholinergic agents on thermoregulatory responses, in.: “The Pharmacology of Thermoregulation”, E. Schönbaum, E. and P. Lomax, eds., Karger, Basel, pp. 232–246.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Vojislav M. Petrović
    • 1
  1. 1.Department of Endocrinology and Metabolism Institutes for Biological Research, Physiology and Biochemistry Faculty of ScienceUniversity of BelgradeBelgradeYugoslavia

Personalised recommendations