Role of Brain Noradrenaline in the Effects of Pre- and Early Postnatal Stress on the Adrenocortical Function in Adults

  • Eugene V. Naumenko
Part of the Biochemical Endocrinology book series (BIOEND)


Studies of consequences of stress or of an alteration of corticosteroid balance at an early period of the ontogeny have a great fundamental and practical significance. Such effects are capable to modify some physiological functions for as long as months, years, and even permanently. However, specific biochemical and physiological mechanisms, whose alterations during the pre- or neonatal period of life can change the reactivity of the hypothalamic—pituitary-adrenocortical axis in adulthood, are almost unknown.


Tyrosine Hydroxylase Emotional Stress Corticosterone Level Plasma Corticosterone Adult Offspring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ader, R., 1968, Effects of early experiences on emotional and physiological reactivity in rat, J. Comp, Physiol, Psychol., 66:264.Google Scholar
  2. Belyaev, D. K., Schüler, L., and Borodin, P. M., 1977, Problems of stress genetics. III. Differential effect of stress on the fertility of mice of different genotypes, Genetika, 13:52 (in Russian),Google Scholar
  3. Berger, B., Herve, D., Dolphin, A., Barthelemy, C., Gay, M., and Tassin, J. L., 1979, Genetically determined differences in noradrenergic input to the brain cortex: a histochemical and biochemical study in two inbred strains of mice, Neuroscience, 4:877.PubMedCrossRefGoogle Scholar
  4. Breese, G. R., and Traylor, T. D., 1972, Developmental characteristics of brain catecholamines and tyrosine hydroxylase in the. rat: effect of 6-hydroxydopamine, Brit. J. Pharmacol., 44:210,CrossRefGoogle Scholar
  5. Butte, J. C., Kakihana, R., Fornham, M. L., and Noble, E. P., 1973, The relationship between brain and plasma corticosterone stress response in developing rats, Endocrinology, 92:1775.PubMedCrossRefGoogle Scholar
  6. Christian, J. J., 1950, The adreno-pituitary system and population cycles in mammals, J. Mammal., 31:247.CrossRefGoogle Scholar
  7. Christian, J. J., Lloyd, J. A., and Davis, D. E., 1965, The role of endocrines in the self-regulation of mammalian populations, in: “Rec. Progr. Hormone Res.”, G. Pincus, ed., Acad. Press, N.Y. and Lond.Google Scholar
  8. Ciaranello, R. D., and Black, I. B., 1971, Kinetics of the glucocorticoid-mediated induction of phenylethanolamine N-methyltransferase in hypophysectomized rat, Biochem, Pharmac., 20:3529.Google Scholar
  9. Coyle, J. T., and Axelrod, J., 1972, Tyrosine hydroxylase in rat brain: developmental characteristics, J. Neurochem., 19:1117.PubMedCrossRefGoogle Scholar
  10. Denenberg, V. H., Rosenberg, K. M., and Zarrow, M. X., 1969, Mice reared with rat ants: effects in adulthood upon plasma corticosterone and open-field activity, Physiology and Behavior. 4:705.CrossRefGoogle Scholar
  11. Erskine, M. S., Geller, E., and Yuwiler, A., 1979, Effects of neonatal hydrocortisone treatment on pituitary and adrenocortical response to stress in young rats, Neuroendocrinology, 29:191.PubMedCrossRefGoogle Scholar
  12. Krieger, D.T., 1974, Effect of neonatal hydrocortisone on corticosteroid circadian periodicity, responsiveness to ACTH and stress in prepubertal and adult rats, Neuroendocrinology, 16:355.PubMedCrossRefGoogle Scholar
  13. Levine, S., 1962, Plasma-free corticosteroid response to electric shock in rats stimulated in infancy, Science, 135:795.PubMedCrossRefGoogle Scholar
  14. Levine, J. S., Haltmeyer, L. C., Koras, L. L., and Denenberg, V. H., 1967, Physiological and behavioral effects of infantile stimulation, Physiology and Behavior, 2:55.CrossRefGoogle Scholar
  15. Markey, K. A., Towle, A. C., and Sze, P. Y., 1982, Glucocorticoid influence on tyrosine hydroxylase activity in mouse locus coeruleus during postnatal development, Endocrinology, 111:1519.PubMedCrossRefGoogle Scholar
  16. Maslova, L.N., Nikulina, E. M., Popova N. K., and Naumenko E. V., 1984, Alteration of catecholamine synthesis in early ontogeny and pituitary-adrenocortical system in adult rats, Ontogenes, 15:327 (in Russian).Google Scholar
  17. Mitskevich, M. S., 1974, Some problems of the development of humoral regulation in prenatal period, Ontogenes. 5:557 (in Russian).Google Scholar
  18. Miyabo, S., and Hisada, T., 1973, Sex difference in ontogenesis of circadian adrenocortical rhythm in cortisone-primed rats, Nature (Lond.), 256:590,CrossRefGoogle Scholar
  19. Moyer, J. A., Herrenkohl, L. R., and Jacobowitz, D. M., 1978, Stress during pregnancy: effect on catecholamine in discrete brain regions of offspring as adults, Brain Res., 144:173.PubMedCrossRefGoogle Scholar
  20. Naumenko, E. V., 1973, “Central Regulation of the Pituitary-Adrenal Complex”, Plenum Publ.Corp., N.Y.Google Scholar
  21. Naumenko, E. V., and Dygalo, N. N., 1979, Hypothalamopituitary-adrenal reactivity in adult rats after hydrocortisone administration to their mothers during pregnancy, Ontogenes, 10:476 (in Russian).Google Scholar
  22. Naumenko, E. V., and Dygalo, N. N., 1980a, Noradrenergic brain mechanisms and emotional stress in adult rats after prenatal hydrocortisone treatment, in: Biogenic Amines in Development” H. Parvez, and S. Parvez, eds., Elsevier/North-Holland, Inc., N.Y.Google Scholar
  23. Naumenko, E. V., and Dygalo, N. N., 1980b, Brain noradrenaline mechanisms and emotional stress in adult rats after prenatal hydrocortisone treatment, in: Catecholamines and Stress: Recent Advances” E. Usdin, R. Kvetnansky, and I. J. Kopin, eds., Elsevier North-Holland, Inc., N.Y.-Amsterdam-Oxford.Google Scholar
  24. Naumenko, E. T., and Dygalo, N. N., 1984, Role of maternal corticosteroids and epinephrine changes during pregnancy in alteration of pituitary-adrenal reactivity of adult offspring, in: Stress: The Role of Catecholamines and Other Neurotransmitters”, E. Usdin, and R. Kvetnansky, eds., Gordone and Breach, Science Publ., Inc, N.Y.Google Scholar
  25. Nasello, A. G., and Ramirez, O. A., 1978, Brain catecholamines metabolism in offspring of amphetamine treated rats, Pharmac. Biochem. Behav., 9:17.Google Scholar
  26. Nyakas, C., and Endroczi, E., 1972, Effect of neonatal corticosterone administration on behavioral and pituitary-adrenocortical responses in the rat, Acta Physiol. Acad, Sci. Hung., 43:231.Google Scholar
  27. Nyakas, C., Viltsek, J., and Endroczi, E., 1980, Sensitivity of catecholamine neuron system to corticosterone and ACTH 4–10 in newborn rats. Studies on brain and adrenal tyrosine hydroxylase, in: “Catecholamine and Stress: Recent Advances” E. Usdin, R. Kvetnansky, and I. J. Kopin, eds., Elsevier/Worth Holland, Inc., N.Y.-Amsterdam-Oxford.Google Scholar
  28. Ozaki, M., Sugawara, K., Takami, N., Mayemura, S.J., and Niwa, M., 1980, Development of hypertension and metabolism of biogenic amines in spontaneously hypertensive rats, in: “Biogenic Amines in Development.” H. Parvez, and S. Parvez, eds., Elsevier/Worth-Holland, Inc., N.Y.-Amsterdam-Oxford.Google Scholar
  29. Peters, D. A., 1982, Prenatal stress: effect on brain biogenic amine and plasma corticosterone levels, Pharmac. Biochem, Behav., 17:721,CrossRefGoogle Scholar
  30. Ramirez, O. A., Keller, E. A., and Orsingher, O. A., 1983, Prenatal amphetamine reduces alpha but not beta adrenergic receptor binding in brain of adult rats, Life Sci., 32:1835.PubMedCrossRefGoogle Scholar
  31. Simmons, R. D., Kellog, C. K., and Miller, R. K., 1984, Prenatal diazepam exposure in rats: long-lasting, receptor-mediated effects on hypothalamic norepinephrine-containing neurons, Brain Res., 293:73.PubMedCrossRefGoogle Scholar
  32. Slotkin, T. A., Whitmore, W. L., Salvaggio, M., and Seidler, F. J., 1979, Perinatal methadone addiction affects brain synaptic development of biogenic amine systems in the rat, Life Sci., 24:1223.PubMedCrossRefGoogle Scholar
  33. Thoenen, H., Otten, U., and Oesch, F., 1973, Transsynaptic regulation of tyrosine hydroxylase, in: “Frontiers in Catecholamine Research”, E. Usdin, and S.H. Snyder, eds., Pergamon Press, Oxford.Google Scholar
  34. Touret, M., Valatx, J.-L., and Jouvet, M., 1982, The locus coeruleus: a quantitative and genetic study in mice, Brain Res., 250:353.PubMedCrossRefGoogle Scholar
  35. Ulrich, R., Yuwiler, A., and Geller, E., 1976, Neonatal hydrocortisone: effect on the development of the stress response and the diurnal rhythm of corticosterone, Neuroendocrinology, 21:49.PubMedCrossRefGoogle Scholar
  36. Weiner, S. G., and Levine, S., 1983, Influence of perinatal malnutrition and early handling on the pituitary-adrenal response to noxious stimuli in adult rat, Physiology and Behavior, 31:285.CrossRefGoogle Scholar
  37. Wurtman, R., and Axelrod, J., 1966, Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids, J. Biol. Chem., 241:2301.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Eugene V. Naumenko
    • 1
  1. 1.Institute of Cytology and GeneticsAcademy of Sciences of the USSR, Siberian BranchNovosibirskUSSR

Personalised recommendations