Calcium-Activated Phospholipid-Dependent Protein Kinase: A Novel Signal Transduction Mechanism in the Pituitary

  • Zvi Naor
  • Jacob Hermon
Part of the Biochemical Endocrinology book series (BIOEND)


The hypothalamic peptide hormones exert their stimulatory effect upon the pituitary by elevation of intracellular cyclic AMP (cAMP) and/or calcium levels (for review see Naor, 1982; Gershengorn, 1982). cAMP was implicated as the second messenger for corticotropin-releasing factor (CRF) and growth hormone releasing hormone (GHRH) (Giguere et al., 1982; Brazeau et al., 1982). On the other hand, recent studies have suggested that increased phosphoinositide turnover and elevated Ca2+ levels are involved in the mechanism of action of gonadotropin releasing hormone (GnRH), thyrotropin releasing hormone (TRH) and GHRH (Naor, 1982; Snyder and Bleasdale, 1982; Gershengorn, 1982; Sutton and Martin, 1982; Rebecchi et al., 1983; Canonico et al., 1983; Kiesel and Catt, 1984; Raymond et al., 1984; Naor et al., 1984).


Protein Kinase Phorbol Ester Pituitary Cell Dependent Protein Kinase Growth Hormone Release Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelrod, J., and Reisine, T.D., 1984, Stress hormones: their interaction and regulation. Science, 224:452.PubMedCrossRefGoogle Scholar
  2. Bradford, M.M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72:248.PubMedCrossRefGoogle Scholar
  3. Brazeau, P., Ling, N., Esch, F., Bohlen, P., Mougin, C., and Guillemin, R., 1982, Somatocrinin (growth hormone releasing factor) in vitro bioactivity: Ca2+ involvement, cAMP mediated action and additivity of effect with PGE2. Biochem. Biophys. Res. Commun., 109:588.PubMedCrossRefGoogle Scholar
  4. Canonico, P.L., Cronin, M.J., Thorner, M.O., Macleod, R.M., 1983, Human pancreatic GRF stimulates phosphatidylinositol labeling in cultured anterior pituitary cells. Am. J. Physiol., 245:E587.PubMedGoogle Scholar
  5. Castanga, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated phospholipid-dependent protein kinase oy tumor promoting phorbol esters. J. Biol. Chem., 257:7847.Google Scholar
  6. Gershengorn, M.C., 1982, Thyrotropin releasing hormone. Mol. Cell. Biochem., 45:163.PubMedCrossRefGoogle Scholar
  7. Giguere, V., Labrie, F., Cote, J., Coy, D.H., Sueiras-diaz, J., and Schally, A.V., 1982, Stimulation of cyclic AMP accumulation and corticotropin release by synthetic ovine corticotropin releasing factor in rat anterior pituitary cells: site of glucocorticoid action. Proc. Natl. Acad. Sci. USA., 79:3466.PubMedCrossRefGoogle Scholar
  8. Greengard, P., 1973, Phosphorylated proteins as physiological effectors. Science, 199:146.CrossRefGoogle Scholar
  9. Iwasa, Y., and Hosey, M.M., 1983, Acidic phospholipids stimulate the autophosphorylation of the catalytic subunit of cyclic AMP-dependent protein kinase. Biochem. Biophys. Res. Commun., 113:916.PubMedCrossRefGoogle Scholar
  10. Jacken, S., Tashjian, A.H. Jr., and Blumberg, P.M., 1981, Characterization of phorbol ester receptors and their down-modulation in GH4C1 rat pituitary cells. Cancer Res., 41:2175.Google Scholar
  11. Kaibuchi, K., Takai, Y., Sawamura, M., Hoshijima, M., Fujikura, T., and Nishizuka, Y., 1983, Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J. Biol. Chem., 258:6701.PubMedGoogle Scholar
  12. Kiesel, L., and Catt, K.J., 1984, Phosphatidic acid and the calcium-dependent actions of gonadotropin-releasing hormone in pituitary gonadotrophs. Arch. Biochem. Biophys., 231:202.PubMedCrossRefGoogle Scholar
  13. Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y., 1980, Activation of calcium and phospholipid dependent protein kinase by diacylglycerol; its possible relation to phosphatidylinositol turnover. J. Biol. Chem., 255:2273.PubMedGoogle Scholar
  14. Kraft, A.S., and Anderson, W.B., 1983, Pnorbol ester increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature, 301:621.PubMedCrossRefGoogle Scholar
  15. Kuo, J.F., Andersson, R.G.G., Wise, B.C., Mackerlova, L., Salomonsson, I., Brackett, N.L., Katoh, N., Snou, M., and Wrenn, A.W., 1980, Calcium dependent protein kinase: Widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin and trifluoperazinine. Proc. Natl. Acad. Sci. USA, 77:7039.PubMedCrossRefGoogle Scholar
  16. Kuo, J.F., Schatzmann, R.C., Turner, R.S., and Mazzei, G.J., 1984, Phospholipid-sensitive Ca2+-dependent protein kinase: a major protein phosphorylation system. Mol. Cell. Endocrinol., 35:65.PubMedCrossRefGoogle Scholar
  17. Langan, T.A., and Hohmann, P., 1974, Phosphorylation of threonine and serine residue of leucine rich histone in growing cells. Fed. Proc., 33:1597Google Scholar
  18. Naor, Z., 1982, Cyclic nucleotide production and hormonal control of anterior pituitary cells. in: “Multihormonal Regulation in Neuroendocrine Cells”, A. Tixier-Vidal and P. Richard, eds., Inserm, 110:395.Google Scholar
  19. Naor, Z. and Catt, K.J., 1981, Mechanism of action of gonadotropin releasing hormone: involvement of phospholipid turnover in luteinizing hormone release. J. Biol. Chem., 256:2226.PubMedGoogle Scholar
  20. Naor, Z., Molcho, J., Zilberstein, M., and Zakut, H., 1984, Phospholipid turnover in gonadotropin releasing hormone target cells: Comparative studies. in: “Hormonal Control of the Hypothalamo-pituitary-gonadal Axis”, K.W. McKerns, and Z. Naor, eds., Plenum Press, p. 493.CrossRefGoogle Scholar
  21. Naor, Z., Azrad, A., Zer, J., Hannoch, T., Zakut, H. and Hermone, J., 1985, Characterization of pituitary calcium-activated phospholipid dependent protein kinase: Redistribution by gonadotropin releasing hormone. Proc. Natl. Acad. Sci. USA, (in press).Google Scholar
  22. Niedel, J.E., Kuhn, L.J., and Vanderbark, G.R., 1983, Phorbol diester receptor copurifies with protein kinase C. Proc. Natl. Acad. Sci. USA, 80:36.PubMedCrossRefGoogle Scholar
  23. Nishikawa, M., Hidaka, H., and Adelstein, R.S., 1983, Phosphorylation of smooth muscle heavy meromyosin by calcium activated phospholipid dependent protein kinase. J. Biol. Chem., 258:14069.PubMedGoogle Scholar
  24. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature, 308:693.PubMedCrossRefGoogle Scholar
  25. Raymond, V., Leung, P.C.K., Veilleux, R., Lefevre, G., and Labrie, F., 1984, LHRH rapidly stimulates phosphatidylinositol metabolism in enriched gonadotrophs. Mol. Cell. Endocrinol., 36:157.PubMedCrossRefGoogle Scholar
  26. Rebecchi, M.J., Kolesnick, R.N., and Gershengorn, M.C., 1983, Thyrotropin releasing hormone stimulates rapid loss of phosphatidylinositol and its conversion to 1,2-diacylglycerol and phosphatide acid in rat mammotropic pituitary cells. J. Biol. Chem., 258:227.PubMedGoogle Scholar
  27. Rozengurt, E., Rodriguez-Pena, M., and Smith, K.A., 1983, Phorbol esters, phospholipase C and growth factors rapidly stimulate the phosphorylation of Mr 80,000 protein in intact quiescent 3T3 cells. Proc. Natl. Acad. Sci. USA, 80:7244.PubMedCrossRefGoogle Scholar
  28. Smith, M.A., and Vale, W.W., 1981, Desensitization to gonadotropin releasing hormone observed in superfused pituitary cells on cytodex beads. Endocrinology, 108:752.PubMedCrossRefGoogle Scholar
  29. Snyder, G.D., and Bleasdale, J.E., 1982, Effect of LHRH on incorporation of [32P]-orthophosphate into phosphatidylinositol by dispersed anterior pituitary cells. Mol. Cell. Endocrinol., 28:55.PubMedCrossRefGoogle Scholar
  30. Sutton, C.A., and Martin, T.F.J., 1982, Thyrotropin releasing hormone (TRH) selectively and rapidly stimulates phosphatidylinositol turnover in GH pituitary cells: A possible second step of TRH action. Endocrinology, 110:1273.PubMedCrossRefGoogle Scholar
  31. Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y., 1979, Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J. Biol. Chem., 254:3692.PubMedGoogle Scholar
  32. Turgeon, J.L., Ashcroft, S.J.H., Waring, D.W., Milewski, M.A., and Walsh, D.A., 1984, Characteristics of adenohypophyseal Ca2+-phospholipid dependent protein kinase. Mol. Cell. Endocrinol., 34:107.PubMedCrossRefGoogle Scholar
  33. Werth, D.K., Niedel, J.E., and Pastan, I., 1983, Vinculin, a cytoskeletal substrate of protein kinase C. J. Biol, Chem., 258:11423.Google Scholar
  34. Zawalich, W., Brown, C., and Rasraussen, H., 1983, Insulin secretion: Combined effects of phorbol ester and A23187. Biochem. Biophys. Res. Commun., 117:448.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Zvi Naor
    • 1
  • Jacob Hermon
    • 1
  1. 1.Department of Hormone ResearchThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations