Some Endocrine and Metabolic Consequences of the Stress Following High Level Spinal Cord Section

  • Kalina I. Vaptzarova
  • Panteley G. Popov
Part of the Biochemical Endocrinology book series (BIOEND)


The important role of glucocorticoids in the stress pathogenesis is characterised by two main points: a rise in plasma concentration of glucocorticoids (GC) and protection against stress by glucocorticoid hormones. Yet, the mechanism of these effects is poorly understood.


Spinal Cord Sham Operation Plasma Corticosterone Level Spinal Cord Section Hepatoma Tissue Culture Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baxter, J. D. and Tomkins, G. M., 1971, Specific cytoplasmic glucocorticoid receptors in hepatoma tissue culture cells, Proc. Natl.Acad.Sci., 68:932.PubMedCrossRefGoogle Scholar
  2. Berry, L. J., Goodrum, K. J., Resnik, I. G., and Ford, Ch. W., 1980, Endotoxin, liver enzyme and liver diseases, in: “The reticuloendothelial system and the pathogenesis of liver diseases”, H. Liehr and M. Grun, eds., Elsevier/Northholland Biomedical Press, Amsterdam.Google Scholar
  3. Bloom, R. S., Edwards, A. V., and Vaughan, N. J. A., 1973, The role of the sympathetic innervation in the control of plasma glucagon concentration in the calf, J.Physiol., 233:257.Google Scholar
  4. Bottoms, G., and Goetsch, D. D., 1967, Subcellular distribution of the (H) corticosterone fraction in brain, thymus, heart and liver of the rat, Proc.Soc.Exptl.Biol.and Med., 124:662.Google Scholar
  5. Burton, K., 1956, A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid, Biochem.J., 62:315.PubMedGoogle Scholar
  6. Čihak, A., and Vaptzarova K., 1973c, Decreased synthesis of DNA in regenerating rat liver after administration of reserpine, Br.J.Pharmacol., 49:253CrossRefGoogle Scholar
  7. Dabeva, M. D., Todorov, B. N., and Hadjiolov, A. A., 1976, Intranuclear distribution of ribosomal RNAs from rat liver, Biokhimia, 41:458.Google Scholar
  8. Hanoune, J., Chambaut, A. M., and Josipowicz, A., 1971, The glucose effect of cortisone action upon rat liver metabolism, BBA, 244:338.PubMedCrossRefGoogle Scholar
  9. Hanoune, J., Lacombe, M. L., and Pecker, F., 1975, The epinephrine sensitive adenylate cyclase of rat liver plasma membranes, J.Biol.Chem., 250:4569.PubMedGoogle Scholar
  10. Harding, H. R., and Rosen R., 1963, Effects of hypophysectomy and growth hormone (GH) on the endogenous levels and induction of two adaptive enzymes, Federat.Proceed., 22:409.Google Scholar
  11. Kenney, F. T., 1967, Regulation of tyrosine-alpha-ketoglutarate transaminase in rat liver. V. Repression in growth hormone-treated rats, J.Biol.Chem., 242:4367.PubMedGoogle Scholar
  12. Knox, W. E., Piras, M. M., and Tokuyama, K., 1966, Tryptophan pyrrolase of liver. I. Activation and assay in soluble extracts of rat liver, J.Biol.Chem., 241:297.PubMedGoogle Scholar
  13. Liberti, J. P., Longman, E. S., Navon, R. S., 1970, Effects of hydrocortisone and growth hormone on tyrosine aminotransferase and tryptophan oxygenase levels in hypophysectomized rats, Endocrinology, 86: 1448.PubMedCrossRefGoogle Scholar
  14. Marliss, E. B., Girardier, L., Seydaux, J., Kanazawa, Y., Wollheim, C., Orci, L., Porte, D. Jr., 1972, Glucagon release by pancreatic nerve stimulation: further evidence for direct control of endocrine pancreatic secretion. Eur.J.Clin.Invest., 214:295.Google Scholar
  15. Munck, A., and Leung, K., 1977, Glucocorticoid receptors and mechanism of action, in: “Receptors and mechanism of action of steroid hormones”, G. R. Pasqualini, ed., Marcel Decker, New York.Google Scholar
  16. Rosen, F., Harding, H. R., Milholland, R. J., and Nichol, C. A., 1963, Glucocorticoids and transaminase activity. IV. Comparison of the adaptive increase of alanine and tyrosine-alpha-ketoglutarate transaminase, J.Biol.Chem., 238:3725.PubMedGoogle Scholar
  17. Sato, B., Kishimoto, S., and Matsumoto, K., 1983, Regulation of steroid receptor function, in: “Hormone receptors and receptor diseases”, H. Imura and H. Kuziya, eds., Excerpta Medica, Amsterdam (1983).Google Scholar
  18. Scatchard, G., 1949, The attraction of proteins for small molecules and ions, Ann.N.Y.Acad.Sci., 68:932.Google Scholar
  19. Shapiro, S., 1968, Interaction between growth hormone and hydrocortisone on the regulation of liver tyrosine transaminase activity, Endocrinology, 83:475.CrossRefGoogle Scholar
  20. Silber, R. H., Busch, R. D., and Oslapas, R., 1958, Practical procedure for estimation of corticosterone and hydrocortisone, Clin.Chem., 4: 278.PubMedGoogle Scholar
  21. Strashimirov, D., 1967, A method for transauricular hypophysectomy in rats, Exp.Med.i Morfol., 6:109.Google Scholar
  22. Thomson, W. J., and Appleman, M. M., 1971, Characterization of cyclic nucleotide phosphodiesterase of rat tissues, J.Biol.Chem., 246:3145.Google Scholar
  23. Tymoczko, J. L., Shapiro, J., Simenstad, D. J., and Nish, A. D., 1982, The effect of polyribonucleotides on the binding of dexamethasone-receptor complex to DNA, J.Steroid.Biochem., 16:595.PubMedCrossRefGoogle Scholar
  24. Vaptzarova, K. I., Davidov, M. S., Markov, D. V., Popov, P. G., and Galabov, G. P., 1969, The effect of spinal cord section on rat liver tryptophan pyrrolase activity, Life Sciences, 8:905.PubMedCrossRefGoogle Scholar
  25. Vaptzarova, K. I., Popov, P. G., and Galabov, G. P., 1973a, Tyrosine-alpha-ketoglutarate aminotransferase activity in rat liver after spinal cord section, J.Neurochemistry, 31:291.CrossRefGoogle Scholar
  26. Vaptzarova, K. I., Popov, P. G., Vesely, J., and Cihak, A., 1973b, Depressed synthesis of DNA in regenrating rat liver after spinal cord (C7) transection, Experientia, 29:1505.CrossRefGoogle Scholar
  27. Vaptzarova, K. I., Popov, P. G., Dimova, R. N., Stoykova, A. S., Rosentall, L. H., and Chelibonova-Lorer, H., 1975a, Alteration of tyrosine aminotransferase activity and ultrastructure of rat liver after high level spinal cord section and D-galactosamine administration, Compt.rend. Acad.bulg.Sci., 28:991.Google Scholar
  28. Vaptzarova, K. I., Popov, P. G., Dimova, R. N., Rosentall, L. H., Stoykova, A. S., and Chelibinova-Lorer, H., 1975b. Effect of D-galactosamine and high level spinal cord section of nucleotide pool of rat liver, Compt.rend.Acad.bulg.Sci., 28:1117.Google Scholar
  29. Vaptzarova, K. I., and Hanoune, J., 1976, Effect of high level section of the spinal cord on the cyclic AMP system in rat liver, BBA, 444:712.PubMedCrossRefGoogle Scholar
  30. Vaptzarova, K. I., Bachvarova, E. D., and Popov, P. G., 1980a, High level section of the spinal cord causes unresponsiveness of rat liver tyrosine oxygenase to hydrocortisone induction, Compt.rend.Acad.bulg.Sci., 33:997.Google Scholar
  31. Vaptzarova, K. I., Tarcolev, N., and Popov, P. G., 1980b, Effect of high level spinal cord section on the insulinemia and glucosemia in rats, Compt.rend.Acad.Sci., 33:1001.Google Scholar
  32. Wicks, W. P., 1968, Tyrosine-alpha-ketoglutarate transaminase induction by epinephrine and adenosine 3′,5′-monophosphate, Science, 160:997.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Kalina I. Vaptzarova
    • 1
  • Panteley G. Popov
    • 1
  1. 1.Regeneration Research LaboratoryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations