ACTH Neurons, Stress and Behavior: A Synthesis

  • John M. Stewart
Part of the Biochemical Endocrinology book series (BIOEND)


Recent discoveries in the field of neuropeptides have made it clear that these molecules play many important roles in regulation of brain function (Krieger, 1983). Although it had been suggested as early as 1953 by Lembeck that substance P (SP) may be a neurotransmitter, progress in the neuropeptide field was slight until the major impetus provided in 1975 by the discovery of enkephalins and endorphins. Since that time the literature has been filled with a flood of often confusing data from which, however, much important new information can be gleaned. Progress in the opioid area has been particularly rapid. It is now well established that ß-endorphin and adrenocorticotropic hormone (ACTH) are synthesized together in one protein precursor (Mains et al., 1977), and that the brain contains a set of ACTH-endorphin (ACTH-End) neurons completely distinct from the pituitary (Watson et al., 1978b). Although there has been considerable speculation about the role or roles of this brain ACTH-End system, only recently has it become possible to synthesize from the available data a reasoned hypothesis as to what that role may be.


Corticotropin Release Factor Arcuate Nucleus Luteinizing Hormone Release Hormone Paradoxical Sleep Locus Ceruleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. K., 1978, Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by Clonidine, Nature, 276:186.PubMedCrossRefGoogle Scholar
  2. Antelman, S. M., and Caggiula, A. R., 1980, Stress-induced behavior: chemotherapy without drugs, in: “Psychobiology of Consciousness,” J.M. Davidson and R.J. Davidson, eds. Plenum, New York.Google Scholar
  3. Basbaum, A. I., and Fields, H. L., 1978, Endogenous pain control mechanisms: Review and hypothesis, Ann. Neurol., 4:451.Google Scholar
  4. Basile, A. S., and Dunwiddie, T. V., 1984, Norepinephrine elicits both excitatory and inhibitory responses from Purkinje cells in the in vitro rat cerebellar slice, Brain Res., 296:15.PubMedCrossRefGoogle Scholar
  5. Benuck, M., and Marks, N., 1975, Enzymatic inactivation of substance P by a partially purified enzyme from rat brain, Biochem. Biophys. Res. Comm., 65:153.Google Scholar
  6. Beny, J. L., and Baertschi, A. J., 1982, Synthetic CRF needs AVP for full corticotropin releasing activity, Experientia, 38:1078.PubMedCrossRefGoogle Scholar
  7. Bertolini, A., Ferrari, W., Fratta, W., Gessa, G. L., Merew, G. P. and Tagliamonte, A., 1975, Sexual arousal in male animals: a central effect of ACTH-like peptides in mammals, in “Peptides: Chemistry Structure Function,” R. Walter and J. Meienhofer, eds., Ann Arbor Science Pub., Ann Arbor, MI.Google Scholar
  8. Bonus, B., and de Wied, D., 1966, Inhibitory and facilitatory effect of two related peptides on extinction of avoidance behavior, Science, 153:318.CrossRefGoogle Scholar
  9. Bohus, B., Gispen, W, and de Wied, D., 1973, Comparison of ACTH(4–10) and LVP on acquisition of conditioned avoidance response, Neuroendocrinol., 11:139.CrossRefGoogle Scholar
  10. Braun, B. G., 1984, Towards a theory of multiple personality and other dissociative phenomena, Psychiat. Clin. North America, 7:171.Google Scholar
  11. Britton, K. T., Lyon, M., Vale, W. and Koob, G. F., 1984, Stress-induced secretion of corticotropin releasing factor immunoreactivity in rat cerebrospinal fluid, Soc. for Neurosci. Abst., 10:94 (Part I).Google Scholar
  12. Buijs, R. M., 1980, Immunocytochemical demonstration of vasopressin and oxytocin in the rat brain by light and electron microscopy, J. Histochem. Cytochem., 28:357.Google Scholar
  13. Capponi, A. M., Faviod-Coune, C. A., Gaillard, R. C. and Muller, A. F., 1982, Binding and activation properties of Angiotensin II in dispersed rat anterior pituitary cells, Endocrinology, 110:1043.PubMedCrossRefGoogle Scholar
  14. Chu, N.-S. and Bloom, F. E., 1974, Norepinephrine-containing neurons: changes in spontaneous discharge patterns during sleep and waking, Science, 179:908.CrossRefGoogle Scholar
  15. Clark, J. T., Smith, E. R. and Davidson, J. M., 1984, Enhancement of sexual motivation in male rats by yohimbine, Science, 225:847.PubMedCrossRefGoogle Scholar
  16. Cohen, D. B., 1980, The cognitive activity of sleep, Prog. Brain Res., 53:307.Google Scholar
  17. Cohen, M., Keets, A., Krivoy, W. A. and Unger, G., 1965, Effect of actinomycin D on morphine tolerance, Proc. Soc. Exp. Biol. Med., 119:381.Google Scholar
  18. Collier, H. O. J., 1980, Cellular site of opiate dependence, Nature, 283:625.PubMedCrossRefGoogle Scholar
  19. Corner, M. A., Mirmiran, M., and Bour, H., 1981, On the role of active (REM) sleep in ontogenesis of the central nervous system, in “Sleep 1980, 5th. Eur. Cong. Sleep Res.Google Scholar
  20. Amsterdam”, W. P. Koella, ed., Karger, Basel.Google Scholar
  21. Corner, M. A., Mirmiran, M., Bour, H. L. M. G., Boer, G. J., van de Poll, N. E., van Oyen, H. G. and Uylings, H. B. M., 1980, Does rapid-eye-movement sleep play a role in brain development?, Prog. Brain Res., 53:347.Google Scholar
  22. Criss, W. E. and McKerns, K. W., 1868, Activation of cow adrenal glucose 6-phosphate dehydrogenase by adrenocorticotropin, Biochemistry, 7:2364.CrossRefGoogle Scholar
  23. Czeisler, C. A., Moore-Ede, M. C., and Coleman, R. M., 1982, Rotating shift work schedules that disrupt sleep are improved by applying circadian principles, Science, 217:460.PubMedCrossRefGoogle Scholar
  24. de Wied, D., and Gispen, W. H., 1976, Impaired development of tolerance to morphine analgesia in rats with hereditary diabetes insipidus, Psychopharmacologia, 46:27.PubMedCrossRefGoogle Scholar
  25. de Wied, D., 1977, Behavioral effects of neuropeptides related to ACTH, MSH and ß-LPH, Ann. N.Y. Acad. Sci., 297:263.Google Scholar
  26. del Rio, J., Naranjo, J. R., Yang, H.-Y. T., and Costa, E., 1983, Substance P-induced release of met5-enkephalin from striatal and periaqueductal gray slices, Brain Res., 279:121.PubMedCrossRefGoogle Scholar
  27. Dorsa, D. M. and Smith, E. M., 1981, Facilitation of mounting behavior in male rats by intracranial injection of LRH, Regul. Peptides, 1:147.Google Scholar
  28. Efrati, P., 1978, Epidemiology, symptomatology and treatment of Buthinae stings, Handb. Exp. Pharm., 48:312.Google Scholar
  29. Frederickson, R. C. A., Burgis, V., Harrell, E., and Edwards, J. 1978, Dual actions of substance P on nociception: Possible role of endogenous opioids, Science, 199:1359.Google Scholar
  30. Friedman, T. C., Orlowski, M., and Wilk, S., 1984, Prolyl endopeptidase: Inhibition in vivo by N-benzyloxycarbonyl-prolyl-prolinal, J. Neurochem., 42:237.Google Scholar
  31. Gaffori, O., Stewart, J. M., and de Wied, D., 1984, Influence of sustance P and fragments on passive avoidance behavior, Experientia, 40:89.PubMedCrossRefGoogle Scholar
  32. Garrud, P., Gray, J. A., and de Wied, D., 1974, Pituitary adrenal hormones and extinction of rewarded behavior in the rat, Physiol. Behav., 12:109.Google Scholar
  33. Gessa, G. L., Paglietti, G., and Quaranotti, B. P., 1979, Induction of copulatory behavior in sexually inactive rats by naloxone, Science, 204:203.PubMedCrossRefGoogle Scholar
  34. Gillies, G., and Lowry, P., 1979, Corticotropin releasing factor may be modulated vasopressin, Nature, 278:463.PubMedCrossRefGoogle Scholar
  35. Gold, M. S., Byck, R., Sweeney, D. R., and Kleber, H. D., 1979, Endorphin-locus coeruleus connection mediates opiate action and withdrawal, Biomedicine, 30:1.PubMedGoogle Scholar
  36. Gu, J., Polak, J. M., Probert, L., Islam, K. N., Marangos, P.J., Mina, S., Adrian, T. E., McGregor, G. P., O’Shaughnessy, D. J., and Bloom, S. R., 1983, Peptidergic innervation of the human male genital tract, J. Urol., 130:386.PubMedGoogle Scholar
  37. Hall, M. E., and Stewart, J. M., 1983a, Substance P and behavior: Opposite effects of N-terminal and C-terminal fragments, Peptides, 4:763.Google Scholar
  38. Hall, M. E., and Stewart, J. M., 1983b Prevention of stress-induced analgesia by substance P, Behav. Brain Res., 10:375.Google Scholar
  39. Hazelwood, R. R., Dietz, P. E., and Burgess, A. W., 1983, “Autoerotic Fatalities”, Heath, Lexington, MA.Google Scholar
  40. Hisano, J., Okamura, Y., and Daikoku, S., 1984, Synaptic regulation of hypothalamus neurons containing ACTH by substance P, Brain Res., 308:162.PubMedCrossRefGoogle Scholar
  41. Hosobuchi, Y., Lamb, S., and Baskin, D., 1980, Reversal of tolerance to opiates by oral tryptophan, Pain, 9:161.PubMedCrossRefGoogle Scholar
  42. Huston, J. P., and Staubli, V., 1979, Post-trial injection of substance P into lateral hypothalamus and amygdala, respectively, facilitates and impairs learning, Behav. Neural Biol., 27:244.Google Scholar
  43. Huxley, A., 1979, “Brave New World”, Harper-Row, New York.Google Scholar
  44. Jacquet, Y. F., 1978, Opiate effects after adrenocorticotropin or ß-endorphin injection in the periaqueductal gray matter of rats, Science, 201:1032.PubMedCrossRefGoogle Scholar
  45. Jacquet, Y. F., Klee, W. A., Rice, K. C., Iijima, I., and Minamikawa, J., 1977, Stereospecific and nonstereospecific effects of (+)- and (-)- morphine: Evidence for a new class of receptors? Science, 198:842.PubMedCrossRefGoogle Scholar
  46. Jouvet, M., 1980, Paradoxical sleep and the nature-nurture controversy, Prog. Brain Res., 53:331.Google Scholar
  47. Kafi, S., and Gaillard, J.-M., 1981, Pre- and postsynaptic effect of yohimbine on rat paradoxical sleep, in “Sleep 1980: 5th Eur. Congr. Sleep Res., Amsterdam”, W. P. Koella, ed., Karger, Basel.Google Scholar
  48. Kalin, N. H., 1983, Associated endocrine, physiological and behavioral changes in rhesus monkeys following intravenous CRF administration, Peptides, 4:211.PubMedCrossRefGoogle Scholar
  49. Kelley, A. E., Stinus, L., and Iversen, S. D., 1979, Behavioral activation induced in the rat by substance P infusion into ventral tegmental area: Implication of dopaminergic AlO neurones, Neurosci. Lett., 11:335.Google Scholar
  50. Kleinlogel, H., Scholtysik, G., and Sayers, A. C., 1975, Effects of Clonidine and BS 100–141 on the EEG-sleep pattern in rats, Eur. J. Pharmacol., 33:159.Google Scholar
  51. Kozlowski, G. P., Chu, L., Hostetter, G., and Kerdelhue, B., 1980, Cellular characteristics of immunolabeled leutinizing hormone releasing hormone (LHRH) neurons, Peptides, 1:37.Google Scholar
  52. Krieger, D. T., 1983, Brain peptides: What, where, and why?, Science, 222:975.Google Scholar
  53. Krivoy, W. A., Couch, J. R., Henry, J. L., and Stewart, J. M., 1979, Synaptic modulation by substance P, Federation Proc., 38:2344.Google Scholar
  54. Krivoy, W. A., Zimmermann, E., and Lande, S., 1974, Facilitation of development of resistance to morphine analgesia by desglycinamide9-lysine vasopressin, Proc. Nat. Acad. Sci., 71:1852.PubMedCrossRefGoogle Scholar
  55. Lanfumey, L., and Adrien, J., 1981, Effects of a noradrenergic agonist on sleep in the rat, in “Sleep 1980, 5th. Eur. Congr. Sleep Res., Amsterdam”, W. P. Koella, ed., Karger, Basel.Google Scholar
  56. Lee, C., Sandberg, B., Hanley, M. and Iversen, L., 1981, Purification and characterization of a membrane-bound substance P degrading enzyme from human brain, Eur. J. Biochem., 114:315.PubMedCrossRefGoogle Scholar
  57. LeRoith, D., Liotta, A. S., Roth, J., Shiloach, J., Lewis, M. E., Pert, C. B., and Krieger, D. T., 1982, Corticotropin and β-endorphin-like materials are native to unicellular organisms, Proc. Natl. Acad. Sci., 79:2086.PubMedCrossRefGoogle Scholar
  58. Lewis, J. W., Cannon, J. T., and Liebeskind, J. C., 1980, Opioid and non-opioid mechanisms of stress analgesia, Science, 208:623.PubMedCrossRefGoogle Scholar
  59. Livingston, K. E., and Hornykiewicz, O., eds., 1978, “Limbic Mechanisms”, Plenum, New York.Google Scholar
  60. Macdonald, J. M., 1977, “Bombers and Firesetters”, Thomas, Springfield, IL.Google Scholar
  61. MacLean, P. D., 1973, “A Triune Concept of the Brain and Behavior”, Univ. of Toronto Press, Toronto.Google Scholar
  62. Mains, R. E., Eipper, B. A., and Ling, N., 1977, Common precursor to corticotropin and endorphins, Proc. Nat. Acad. Sci., 74:3014.PubMedCrossRefGoogle Scholar
  63. Marshall, P., Surridge, D., and Delva, N., 1981, The role of nocturnal penile tumescence in differentiating between organic and psychogenic impotence: The first stage of validation, Arch. Sex Behav., 10:1.PubMedCrossRefGoogle Scholar
  64. Martin, J. T., 1978, Imprinting behavior: Pituitary-adrenocortical modulation of the approach response, Science, 200:565.PubMedCrossRefGoogle Scholar
  65. McCarley, R. W., and Hobson, J. A., 1975, Sleep cycle oscillation: Reciprocal discharge by two brainstem neuronal groups, Science, 189:55.PubMedCrossRefGoogle Scholar
  66. Mintz, J., O’Hare, K., O’Brien, C. P., and Goldschmidt, J., 1974, Sexual problems of heroin addicts, Arch. Gen. Psychiat., 31:700.PubMedCrossRefGoogle Scholar
  67. Moore-Ede, M. C., Czeisler, C. A., and Richardson, G. S., 1983, Circadian timekeeping in health and disease, N. Engl. J. Med., 309:469;PubMedCrossRefGoogle Scholar
  68. Moore-Ede, M. C., Czeisler, C. A., and Richardson, G. S., 1983, Circadian timekeeping in health and disease, N. Engl. J. Med., **309:530.PubMedCrossRefGoogle Scholar
  69. Morales, A., Surridge, D. H., and Marshall, P. G., 1981, Yohimbine for treatment of impotence in diabetes, N. Engl. J. Med., 305:1221.PubMedGoogle Scholar
  70. Morley, J. E., and Levine, A. S., 1982, CRF, grooming and ingestive behavior, Life Sci., 31:1459.PubMedCrossRefGoogle Scholar
  71. Moss, R. L., McCann, S. M., and Dudley, C. A., 1975, Releasing hormones and sexual behavior, Prog. Brain Res., 42:37.PubMedCrossRefGoogle Scholar
  72. Mueller, A. J., Hoffer, B. J., and Dunwiddie, T. V., 1981, Noradrenergic responses in rat hippocampus: Evidence for mediation by α and β receptors in the in vitro slice, Brain Res., 214:113.PubMedCrossRefGoogle Scholar
  73. Oehme, P., Hecht, K., Piesche, L., Hilse, H., and Rathsack, R., 1982, Relations of substance P to stress and catecholamine metabolism, in “Substance P in the Nervous System”, Ciba Fdn. Symp. #91, R. Porter and M. O’Connor, eds., Pitman, London.Google Scholar
  74. Pernow, B., 1983, Substance P, Pharmacol. Rev., 35:85.PubMedGoogle Scholar
  75. Porter, R., and O’Connor, M., eds., 1982, “Substance P in the Nervous System” Ciba Fdn. Symp. #91, Pitman, London.Google Scholar
  76. Rimon, R., LeGreves, P., Nyberg, F., Haikkila, L., Salmela, L., and Terenius, L., 1984, Elevation of substance P-like peptides in CSF of psychiatric patients, Biol. Psychiat., 19:509.PubMedGoogle Scholar
  77. Roche, K. E., and Leshner, A. J., 1979, ACTH and vasopressin treatments immediately after a defeat increase future submissiveness in male mice, Science, 204:1343.PubMedCrossRefGoogle Scholar
  78. Rubin, R. T., 1975, Sleep-endocrinology studies in man, Prog. Brain Res., 42:73.PubMedCrossRefGoogle Scholar
  79. Sagan, C., 1977, “The Dragons of Eden”, Random House, New York.Google Scholar
  80. Sandler, M., and Cessa, G. L., eds., 1975, “Sexual Behavior: Pharmacology and Biochemistry”, Raven, New York.Google Scholar
  81. Sandman, C. A., Beckwith, B. E., and Kastin, A. J., 1980, Are learning and attention related to the sequence of amino acids in ACTH/MSH peptides?, Peptides, 1:277.PubMedCrossRefGoogle Scholar
  82. Schenberg, S. and Pereira Lima, F. A., 1978, Venoms of Ctenidae, Handb. Exp. Pharmacol., 48:217.Google Scholar
  83. Schlesinger, K., Lipsitz, D. U., Peck, P. L., Pelleymounter, M. A., Stewart, J. M., and Chase, T. N., 1983, Substance P enhancement of passive and active avoidance conditioning in mice, Pharmacol. Biochem. Behav., 19:655.PubMedCrossRefGoogle Scholar
  84. Schreiber, F. R., 1973, “Sybil”, Warner Books, New York.Google Scholar
  85. Seino, S., Sakurai, H., Kazuya, H., Tsuda, K., Tanigawa, K., Takahashi, K., Seino, Y., and Imura, H., 1982, Immunocytochemical localization of CRF in ovine hypothalamus, Peptides, 3:183.CrossRefGoogle Scholar
  86. Simon-Oppermann, C., Gray, D., Szczepanska-Sadowska, E., and Simon, E., 1983, Vasopressin in blood and third ventricle CSF of dogs in chronic experiments, Am. J. Physiol., 245:R541.PubMedGoogle Scholar
  87. Skrabanek, P., and Powell, D., eds., 1983, “Substance P Dublin”, Boole Press, Dublin, Ireland.Google Scholar
  88. Smotherman, W. P. and Levine, S., 1980, ACTH-(4–10) affects behavior but not plasma corticosterone levels in a conditioned taste aversion situation, Peptides, 1:207.PubMedCrossRefGoogle Scholar
  89. Sofroniew, M. V., and Weindl, A., 1978, Projections from the parvocellular vasopressin- and neurophysin-containing neurons of the suprachiasmatic nucleus, Am. J. Anat., 153:391.PubMedCrossRefGoogle Scholar
  90. Stefanick, M. L., Smith, E. R., Clark, J. T., and Davidson, J. M., 1982, Effects of a potent dopamine receptor agonist, RDS-27, on penile reflexes and seminal emission in intact and spinally transected Rats, Physiol. Behav., 29:973.PubMedCrossRefGoogle Scholar
  91. Stevenson, R. L., 1964, “Dr. Jekyll and Mr. Hyde”, Prentice-Hall, New York.Google Scholar
  92. Stewart, J. M., 1981, Brain ACTH-endorphin neurons as regulators of central nervous system activity, in “Peptides 1980”, K. Brunfeldt, ed., Scriptor, Copenhagen.Google Scholar
  93. Stewart, J. M. and Channabasavaiah, K., 1979, Evolutionary aspects of some neuropeptides, Federation Proc, 38:2302.Google Scholar
  94. Stewart, J. M., Chipkin, R. E., Channabasavaiah, K., Gay, M. L., and Krivoy, W. A., 1980, Inhibition of development of tolerance to morphine by a peptide related to ACTH, in “Neural Peptides and Neuron. Commun.”, E. Costa and M. Trabucchi, eds., Raven Press, New York, 1980.Google Scholar
  95. Stewart, J. M., Hall, M. E., Harkins, J., Frederickson, R. C. A., Terenius, L., Hokfelt, T., and Krivoy, W. A., 1982, A fragment of substance P with specific central activity: SP(1–7), Peptides, 3:851.PubMedCrossRefGoogle Scholar
  96. Stoller, R. J., 1975, “Perversion”, Pantheon, New York.Google Scholar
  97. Strahlendorf, H. K., Strahlendorf, J. C., and Barnes, C. D., 1980, Endorphin-mediated inhibition of locus ceruleus neurons, Brain Res., 191:284.PubMedCrossRefGoogle Scholar
  98. Swanson, L. W., Sawchenko, P. E., Rivier, J., and Vale, W. W., 1983, Organization of ovine CRF immunoreactive cells and fibers in the rat brain: an immunohistochemical study, Neuroendocrinol., 36:165.CrossRefGoogle Scholar
  99. Szekely, J. I., Miglecz, E., Dunai-Kovacs, Z., Tarnawa, I., Ronai, A. Z., Graf, L., and Bajusz, S., 1979, Attenuation of morphine tolerance and dependence by α-melanocyte stimulating hormone (α-MSH), Life Sci., 24:1931.PubMedCrossRefGoogle Scholar
  100. Tapp, W. N., and Holloway, F. N., 1981, Phase shifting circadian rhythms produces retrograde amnesia, Science, 211:1056.PubMedCrossRefGoogle Scholar
  101. Terenius, L., 1976, Somatostatin and ACTH are peptides with partial antagonist-like selectivity for opiate receptors, Eur. J. Pharmacol., 38:211.PubMedCrossRefGoogle Scholar
  102. Tilders, F., Tatemoto, K., and Berkenbosch, F., 1984, The intestinal peptide PHI-27 potentiates the action of CRF on ACTH release from rat pituitary fragments in vitro, Endocrinology, 115:1633.PubMedCrossRefGoogle Scholar
  103. Vale, W., Spiess, J., Rivier, C., and Rivier, J., 1981, Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin, Science, 213:1394.PubMedCrossRefGoogle Scholar
  104. Valentino, R. J., Foote, S. L., and Aston-Jones, G., 1983, CRF activates noradrenergic neurons of the locus ceruleus, Brain Res., 270:363.PubMedCrossRefGoogle Scholar
  105. Valzelli, W., 1981, “Psychobiology of Aggression and Violence”, Raven, New York.Google Scholar
  106. Versteeg, D. H. G., 1973, Effect of two ACTH analogs on norepinephrine metabolism in rat brain, Brain Res., 49:483.PubMedCrossRefGoogle Scholar
  107. Virag, R., Ottesen, B., Fahrenkrug, J., Levy, C., and Wagner, G., 1982, VIP release during penile erection in man, Lancet, 2:1166.PubMedCrossRefGoogle Scholar
  108. Walter, R., Ritzmann, R. F., Bhargava, H. N., and Flexner, L. B., 1979, Prolyl-leucyl-glycinamide, cyclo(leucylglycine), and derivatives block development of physical dependence on morphine in mice, Proc. Natl. Acad. Sci., 76:518.PubMedCrossRefGoogle Scholar
  109. Watson, S. J., Akil, H., Richard, C. W., III, and Barchas, J. D., 1978a, Evidence for two separate opiate peptide neuronal systems, Nature, 275:226.PubMedCrossRefGoogle Scholar
  110. Watson, S. J., Richard, C. W., III, and Barchas, J. D., 1978b, ACTH in rat brain: Immunocytochemical localization in cells and axons, Science, 200:1180.PubMedCrossRefGoogle Scholar
  111. Weitzman, E. D., Boyer, R. M., Kapen, S., and Hellman, L., 1975, The relationship of sleep and sleep stages to Neuroendocrine secretion and biological rhythms in man, Rec. Prog. Hormone Res., 31:399.Google Scholar
  112. Williams, R. L., Karacan, I., eds., 1978, “Sleep Disorders”, Wiley, New York.Google Scholar
  113. Willoughby, D. O., Martin, J. B., 1978, The role of the limbic system in neuroendocrine regulation, in “Limbic Mechanisms”, H. E. Livingston, and D. Hornykiewicz, eds., Plenum, New York.Google Scholar
  114. Wolff, D. J., Brostrom, M. A., and Brostrom, C. O., 1977, Divalent cation binding sites of CDR and their role in the regulation of brain cyclic nucleotide metabolism, in “Calcium Binding Proteins and Calcium Function”, R. H. Wasserman, R. A. Corradino, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, F. L. Siegel, eds, North Holland, New York.Google Scholar
  115. Yaksh, T. L., and Tyce, G. M., 1979, Microinjection of morphine into the periaqueductal gray evokes the release of serotonin from spinal cord, Brain Res., 171:176.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • John M. Stewart
    • 1
  1. 1.Department of BiochemistryUniversity of Colorado School of MedicineDenverUSA

Personalised recommendations