Effect of Constant Light and Darkness on the Deep Pineal of the Rat

  • M. Kecman
  • Lj. Somer
  • M. Matavulj
Part of the Biochemical Endocrinology book series (BIOEND)

Abstract

Anatomically viewed, the pineal organ of the rat is composed of the superficial pineal, the stalk, and the deep pineal s. lamina intercalaris (Kappers, 1960; Volrath, 1979). The deep pineal represents about 3% of the pineal complex. It lies between the posterior and the habenular commissures, being in the close contact with the third ventricle. Boeckmann (1980) found the identity of pinealocytes of the pineal complex. The innervation of the pineal complex is mainly autonomic (symphatetic, arising from the ganglion cervicale superior and reaching the pineal via nervi conarii), but the commissural and peptidergic fibres, whose origin is still to be elucidated in detail, are also present. Vasopressin and Oxitocin fibres are evident in the deep pineal of the rat (Buijs and Pevet, 1980).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boeckmann, D., 1980, Morphological investigation of the deep pineal of the rat, Cell Tissue Res., 210:283.PubMedCrossRefGoogle Scholar
  2. Buijs, R. M. and Pevet, P., 1980, Vasopressin and Oxitocin containing fibers in the pineal gland and subcommissural organ of the rat, Cell Tissue Res., 205:ll.CrossRefGoogle Scholar
  3. Clabough, J. W., 1973, Cytological aspects of pineal development in rats and hamster, Am. J. Anat., 137:215.PubMedCrossRefGoogle Scholar
  4. Ilnerova, H., Bäckström, M., Sääf, J., Wetterberg, L., and Vangbo, M., 1978, Melatonin in rat pineal and serum; rapid parallel decline after light exposure at night, Neurosci. Lett., 9:189.CrossRefGoogle Scholar
  5. Ilnerova, H. and Vanacek, J., 1980, Pineal rhythm in N-acetyltransferase activity in rats under different artificial photoperiods in natural daylight in the course of a year, Neuroendocrinology, 31:316.CrossRefGoogle Scholar
  6. Heidbüchel, U. and Vollrath, L., 1983, Pineal complex of rats: Effects of superficial pinealectomy on the deep pineal, Acta anat., 117:165.PubMedCrossRefGoogle Scholar
  7. Kappers, J. A., 1960, The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z. Zellforsch. mikrosk. Anat., 52:163.PubMedCrossRefGoogle Scholar
  8. Kecman, M., 1978, Histophysiological properties of the pineal gland following hypophysectomy, Doctoral Dissertation, Novi SadGoogle Scholar
  9. Kecman, M., Somer, Lj. and Matavulj, M., 1984, Effect of long-term administration of lithium carbonate on superficial and deep pineal of the rat, Third Colloquium of the EPSG, Pécs, Abstracts.Google Scholar
  10. Klein, D. C. and Weiler, J. L., 1972, Rapid light-induced decrease in pineal serotonin N-acetyltransferase activity, Science, 177:532.PubMedCrossRefGoogle Scholar
  11. Korf, H. W. and Wagner, U., 1980, Evidence for a nervous connection between the brain and the pineal organ in the guinea pig, Cell Tissue Res., 209:505.PubMedCrossRefGoogle Scholar
  12. Legait, E., Legait, H. and Chevalier, C., 1979, Modification de l’epiphyse profonde apres ablation de l’epiphyse superficielle chez Hamster doré, C. r. Seanc. Soc. Biol., 173:725.Google Scholar
  13. Lewy, A., 1982, Biochemistry and regulation of mammalian melatonin production, in: “The Pineal Gland”, R. Relkin, ed., Elsevier Biomedical, New York-Amsterdam-Oxford.Google Scholar
  14. Miline, R., 1957, La part de l’epiphyse dans le syndrom d’adaptation, Congr. Nat. des Sci. Med., ed. de l’Akad. Rep. Pop. Roumaine, pp. 421–444.Google Scholar
  15. Miline, R., Devečerski, V. and Krstić, R., 1969, Corpus pineale — glande de nature sensoneuroendocrine, Acad. Sci. and Arts BiH, Radovi, 37:69.Google Scholar
  16. Miline, R., 1982, Peptidergic activity of the pineal gland in stress, in: “Hormonally Active Brain Peptides”, K. W. McKerns and V. Pantić, eds., Plenum Press, New York and London.Google Scholar
  17. Möller, M. and Korf, H.-W., 1983, Central innervation of the pineal organ of the Mongolian gerbil, Cell Tissue Res., 230:259.PubMedGoogle Scholar
  18. Moore, R. Y., 1975, Indolamine metabolism in the intact and denervated pineal, pineal stalk and habenula, Neuroendocrinology, 19:323.PubMedCrossRefGoogle Scholar
  19. Oksche, A., 1984, Comparative aspects in pineal research, Third Colloquium of the EPSG, Pécs, Abstracts.Google Scholar
  20. Quay, W. B., 1963, Cytologic and metabolic parameters of pineal inhibition by constant light in the rat. Z. Zellforsch. mikrosk. Anat., 60:479.PubMedCrossRefGoogle Scholar
  21. Pevet, P., 1982, Anatomy of the pineal gland of mammals, in: “The Pineal Gland”, R. Relkin, ed., Elsevier Biomedical, New York-Amsterdam-Oxford.Google Scholar
  22. Relkin, R., 1982, Miscellaneous effects of the pineal, in: “The Pineal Gland”, R. Relkin, ed., Elsevier Biomedical, New York-Amsterdam-Oxford.Google Scholar
  23. Reuss, S. and Vollrath, L., 1984, Electrophysiological properties of the rat pinealocytes: Evidence for circadian and ultradian rhythms, Exp. Brain Res., 55:455.PubMedCrossRefGoogle Scholar
  24. Reuss, S., 1984, personal communication.Google Scholar
  25. Reiter, R. J. and Hedlund, L., 1976, Peripheral symphatetic innervation of the deep pineal of the golden hamster, Experientia, 32:1071.PubMedCrossRefGoogle Scholar
  26. Roth, W. D., Wurtman, R. J., and Altschule, M. D., 1982, Morphologic changes in the pineal parenchyma cells of rats exposed to continuous light or darkness, Endocrinology, 71:888.CrossRefGoogle Scholar
  27. Schneider, T., Semm, P., and Vollrath, L., 1981, Ultrastructural observations on the central innervation of the guinea-pig pineal gland, Cell Tissue Res., 220:41.PubMedCrossRefGoogle Scholar
  28. Semm, P. and Vollrath, L., 1979, Electrophysiology of the guinea-pig pineal organ: Symphatetic influenced cells responding differently to light and dark, Neurosci. Lett., 12:93PubMedCrossRefGoogle Scholar
  29. Semm, P. and Vollrath, L., 1980, Electrophysiological evidence for circadian rhythmicity in a mammalian pineal organ, J. Neural Transmiss., 47:181.CrossRefGoogle Scholar
  30. Tapp, E. and Bloomfield, M., 1970, The parenchymal cells of the rat t pineal gland, Acta morph. neerld-scand. 8:119.Google Scholar
  31. Vollrath, L., 1979, Comparative morphology of the vertebrate complex, in: “The Pineal of Vertebrates Including Man”, J. A. Kappers and P. Pevet, eds., Prog. Brain Res., 52, Elsevier Amsterdam.Google Scholar
  32. Vollrath, L., 1981, The Pineal Organ. Handbuch der mikroskopischen Anatomie des Menschen, Vol. 7, Springer Verlag, Berlin.Google Scholar
  33. Weibel, E. R., 1979, Stereological Methods, Vol. I, Practical Methods for Biological Morphometry, Acad. Press, London-New York-Toronto-Sydney-San Francisco.Google Scholar
  34. Wiklund, L., 1974, Development of serotonin-containing cells and symphatetic innervation of the habenular region in the rat brain, Cell Tissue Res., 155:321.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. Kecman
    • 1
  • Lj. Somer
    • 1
  • M. Matavulj
    • 2
  1. 1.Dept. of Histol. and Embryol., Fac. of MedUniv. of Novi SadNovi SadYugoslavia
  2. 2.Inst. of Biol., Fac. of Nat. Scis. and Math.Univ. of Novi SadNovi SadYugoslavia

Personalised recommendations