Time Resolved Fluorescence Spectroscopy and Diffusion of Biological Molecules

  • Rudolf Rigler
  • Pietro Grasselli
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 34)


The use of lasers in time resolved fluorescence measurements leads to considerable improvement of existing techniques for the measurement of rotational diffusion and has opened new ways for the measurement of translational diffusion. The high sensitivity and spectroscopic selectivity of fluorescence labels have proven to be of great value and the diffusion of molecules can be followed at very low concentrations and in the presence of other non labelled molecules. These features are very important for the analysis of macromolecular assemblies such as enzymes or structural proteins interacting with nucleic acids of high molecular weight or membranes and their constituents. The high time resolution covering the picosecond domain has already made feasible studies of fast intramolecular motions of biomolecular structures (Munro et al.1979). An outline of concepts and methods for the determination of rotational and translational diffusion from the analysis of time dependent fluorescence anisotropy, fluorescence intensity fluctuation and fluorescence photobleaching recovery together with applications will be given.


Rotational Diffusion Translational Diffusion Time Resolve Fluorescence Spectroscopy Rotational Relaxation Time Swedish Natural Science Research Council 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aragon, S.R. and Pecora, R., (1976) J.Chem.Phys. 64, 1791.CrossRefGoogle Scholar
  2. Austin, R.H., Chan, S.S. & Jovin, T.M. (1979) Proc.Nat.Acad.U.S.A. in press.Google Scholar
  3. Axelrod, D., Koppel, D.E., Schlessinger, I., Elson, E.L. & Webb, W.W. (1976) Biophys.J., 16, 1055.CrossRefGoogle Scholar
  4. Beddard, G.S., Flemming, G.R., Porter, G. & Robbins, R.J. (1979) Proc.R.Soc. London in press.Google Scholar
  5. Belford, G.G., Belford, R.L. & Weber, G. (1972), Proc.Nat.Acad.U.S.A. 69, 1392.CrossRefGoogle Scholar
  6. Chuang, T.J. & Eisenthal, K.B. (1972) J.Chem.Phys. 57, 5094.CrossRefGoogle Scholar
  7. Ehrenberg, M. & Rigler, R. (1972) Chem.Phys.Letters 14, 539.CrossRefGoogle Scholar
  8. Ehrenberg, M. & Rigler, R. (1976) Quart.Rev.Biophys. 9, 69.CrossRefGoogle Scholar
  9. Ehrenberg, M., Rigler, R. & Wintermeyer, W. (1979) Biochemistry 18, 4588CrossRefGoogle Scholar
  10. Elson, E.L. & Magde, D. (1974) Biopolymers 13, 1.CrossRefGoogle Scholar
  11. Grasselli, P. & Rigler, R. Manuscript in preparation.Google Scholar
  12. Harvey, S.C., (1979) Biopolymers, 18, 1081.CrossRefGoogle Scholar
  13. Heyn, M.P., Cherry, R.J. & Müller, U. (1977) J.Mol.Biol. 117, 607.CrossRefGoogle Scholar
  14. Highsmith, S., Mendelson, R.A. & Morales, M.F. (1976), Proc.Nat. Acad.Sci.U.S.A. 73, 133.CrossRefGoogle Scholar
  15. Jacobson, K., Derzko, Z., Wu, E.S., Hou, Y. & Poste, G. (1976), J. of Supramol.Structure 5, 565.CrossRefGoogle Scholar
  16. Koester, V.I. & Dowben, R.M. (1978), Rev.Sci.Instr. 49, 1180.CrossRefGoogle Scholar
  17. Lavalette, D., Amand, B. and Pochor, F. (1977), Proc.Nat.Acad.Sci. U.S.A. 74, 1407.CrossRefGoogle Scholar
  18. Magde, D., Elson, E.L. & Webb, W. (1974) Biopolymers 13, 29.CrossRefGoogle Scholar
  19. Munro, I., Pecht, I. & Stryer, L. (1979) Proc.Nat.Acad.Sci. U.S.A., 56, 76.Google Scholar
  20. Peters, R., Peters, J., Teur, K.H. & Bähr, W. (1974) Biophys.Biochem.Acta 367, 282.CrossRefGoogle Scholar
  21. Plumbridge, I.A., Bäumert, H.G., Ehrenberg, M. and Rigler, R. (1979). Submitted to Nucleic Acid Research.Google Scholar
  22. Razi, Naqvi, K., Gonzalez — Rodriguez, I., Cherry, R.J. & Chapman, D. (1973) Nature New Biol. 254, 249.Google Scholar
  23. Richter, P.H. & Eigen, M. (1974) Biophys.Chem. 2, 255.CrossRefGoogle Scholar
  24. Rigler, R. & Ehrenberg, M. (1976), Quart.Rev.Biophys. 9, 1.CrossRefGoogle Scholar
  25. Rigler, R., Ehrenberg, M. & Wintermeyer, W. (1977), Mol. Biol. Biochem. and Biophys. 24, 219.CrossRefGoogle Scholar
  26. Rigler, R., Grasselli, P. & Ehrenberg, M. (1979) Physica Scripta 19, 486CrossRefGoogle Scholar
  27. Schlessinger, I., Barak, L.S., Hammes, G.G., Yamada, K.M., Pastan, I., Webb, W.W. and Elson, E.L. (1977) Proc.Nat.Acad.Sci. U.S.A. 74, 2909.CrossRefGoogle Scholar
  28. Wahl, Ph. (1975) Chem.Phys. 7, 220.CrossRefGoogle Scholar
  29. Wahl, Ph., Paoletti, J., Le Pecq, J.B. (1970) Proc.Nat.Acad.Sci.,U.S.A. 65, 417.CrossRefGoogle Scholar
  30. Weissman, M., Schindler, H. and Feher, G. (1976) Proc.Nat.Acad.Sci. U.S.A. 73, 2776.CrossRefGoogle Scholar
  31. Wolf, D.E., Schlessinger, J., Elson, E.L., Watt, W.W. Blumentahl, R. & Heukart, P. (1977) Biochem. 16, 3476CrossRefGoogle Scholar
  32. Yguerabide, J., Epstein, H.F. & Stryer, L. (1970) J.Mol.Biol. 51, 573.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Rudolf Rigler
    • 1
  • Pietro Grasselli
    • 1
  1. 1.Department of Medical BiophysicsKarolinska InstitutetStockholm 60Sweden

Personalised recommendations