Ophthalmic Uses of Lasers

  • M. L. Wolbarsht
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 34)


Three headings under which the uses of lasers in ophthalmology can be considered are: Diagnosis, Therapy and Research. There is some overlap between various classifications, but in general they are separate. In both diagnosis and research both the spatial and temporal coherence properties of the laser, are often of value. In therapy it is not yet evident that these special properties are necessary.


Proliferative Diabetic Retinopathy Speckle Pattern Retinal Vessel Laser Photocoagulation Trabecular Meshwork 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bill, A. Ocular circulation, in “Adler’s Physiology of the Eye.” (R. A. Moses, ed.), 6th ed. C. V. Mosby Pub., St. Louis, pp. 210–229, 1975.Google Scholar
  2. Blach, R. and Hamilton, A. M. The technique and indications for photocoagulation in diabetic retinopathy: I. Principles of photocoagulation. Int. Ophthal. 1:19–29, 1978.CrossRefGoogle Scholar
  3. Bruckner, A. P. Picosecond light scattering measurements in the cataractous lens. Proc. Tech. Prog. Electro-Optics/Laser 77 Conf. and Expos., pp. 473–479, Anaheim, 1977.Google Scholar
  4. Calkins, J. Fundus camera holography, in “Holography in Medicine,” P. Greguss, ed., IPC Science and Technology Press, Ltd., Surrey, England, pp. 85, 1976.Google Scholar
  5. Campell, F. and Green, D. Optical and retinal factors affecting visual resolution. J. Physiol. (Lond.) 176:576–593, 1965.Google Scholar
  6. Cleary, S. F. Laser pulses and the generation of acoustic transients in biological material, in “Laser Applications in Medicine and Biology, Vol. 3,” ed. M. L. Wolbarsht, Plenum, New York, pp. 175–219, 1977.Google Scholar
  7. Felix, M. P. Laser-generated ultrasonic beams. Rev. Sci. Inst. 45:1106–1108, 1974.CrossRefGoogle Scholar
  8. Goldmann and Lotmar, W. Sterochronoscopy. Personal communication, 1979.Google Scholar
  9. Green, D. Laser-interferometry in the evaluation of potential macular function in the presence of opacities in the ocular media. Trans. Amer. Acad. Ophthalmol, and Otolar. 75:629–637, 1971.Google Scholar
  10. Havlice, J. F. and Taenzer, J. C. Medical ultrasonic imaging: An overview of principles and instrumentation. Proc. IEEE 67: 620–641, 1979.CrossRefGoogle Scholar
  11. Hennessy, R. T. and Leibowitz, H. Laser optometer incorporating the Badal principle. Behav. Res. Meth. Instrum. 4:237–239, 1972.CrossRefGoogle Scholar
  12. Hochheimer, B. F. Lasers in Ophthalmology, in “Laser Applications in Medicine and Biology, Vol. 2,” ed. M. L. Wolbarsht, Plenum, New York, pp. 41–75, 1974.CrossRefGoogle Scholar
  13. Inglestarn, E. and Ragnarsson, S. I. Eye refraction examined by the aid of speckle pattern produced by coherent light. Vis. Res. 12:411–420, 1972.CrossRefGoogle Scholar
  14. Jöbsis, F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267, 1977.CrossRefGoogle Scholar
  15. Jöbsis, F. Oxidative metabolic effects of cerebral hypoxia, in “Advances in Neurology, Vol. 26,” ed. by S. Fahn et al., Raven Press, pp. 299–318, 1979.Google Scholar
  16. Kak, A. C. Computerized tonography with x-ray, emission and ultrasound sources. Proc. IEEE 67: 1245–1272, 1979.CrossRefGoogle Scholar
  17. Knoll, H. Measuring anetropria with a gas laser. Amer. J. Optom. and Arch. Amer. Acad. Optom. 43:415–418, 1966.Google Scholar
  18. Krasnov, M. M. Laseropuncture of anterior chamber angle in glaucoma. Amer. J. Ophthal. 75:674–678, 1973.Google Scholar
  19. Landers, M. B., III. and Wolbarsht, M. L. Laser Eye Instrumentation, in “Laser Biomedical Engineering,” ed. L. Goldman, Plenum Press, New York, in press, 1979.Google Scholar
  20. LeGrand, Y. Sur la mesure de l’acuité visuelle au moyen de franges d’interférence. C. R. Acad. Sci. (Paris) 200:490, 1935.Google Scholar
  21. L’Espérance, F. A., Jr. An ophthalmic argon laser photocoagulation system: Design, Construction, and Laboratory Investigations. Trans. Amer. Ophthalmol. Soc. 66:827–994, 1968.Google Scholar
  22. Lotmar, W. Personal communication, 1979.Google Scholar
  23. Medeiros, J. A., Borwein, B. and McGowan, J. W. Application of optical transform techniques to laser irradiation of the eye. Invest. Ophthalmol. Vis. Sci. 18:602–613, 1979.Google Scholar
  24. Matsumato, T., Nagata, R., Salshin, M., Matsuda, T. and Nakao, S. Measurements by holographic interferometry of the deformation of the eye accompanying changes in intraocular pressure. Appl. Opt. 17:3538–3539, 1978.CrossRefGoogle Scholar
  25. Ohzu, H. Application of laser in ophthalmology and vision research. Mem. Waseda Univ. Sch. Sci. Eng. 40:1–28, 1976.Google Scholar
  26. Patz, A., Brem, S., Finkelstein, D., Chen, E., Lutty, G., Bennett, A., Coughlin, W. and Bardner, J. A new approach to the problem of retinal neovascularization. Trans. Amer. Acad. Ophthalmol. Otolarygol. 85:626–637, 1978.Google Scholar
  27. Ronchi, L., Serra, A. and Meucci, C. Intraradian changes in accommodative astigmatism recorded by a modified version of Badal’s optometer. Proc. Int. Symp. Ophthalmol. Opt., Tokyo, pp. 15–18, 1978.Google Scholar
  28. Rosencwaig, A. Photoacoustic spectroscopy of solids. Phys. Today, pp. 22–30, Sept. 1975.Google Scholar
  29. Sinclair, D. C. Demonstration of chromatic aberration in the eye using coherent light. J. Opt. Soc. Amer. 55:575, 1965.CrossRefGoogle Scholar
  30. Ukai, K. and Ohzu, H. Measurement of accommodation by observing speckles. Optica Act. 1:66, 1976.Google Scholar
  31. Van der Zypen, E., Bebie, H. and Fankhauser, F. Morphological studies about the efficiency of laser beams upon the structures of the angle of the anterior chamber: Facts and concepts related to the treatment of the chronic simple glaucoma. Int. Ophthal. 1:109–122, 1979.CrossRefGoogle Scholar
  32. Van Ligten, R. F., Grolman, B. and Lawton, K. The hologram and its ophthalmic potential. Amer. J. Optom. 43:351, 1966.Google Scholar
  33. Vaughn, K., Laing, R. and Wiggins, R. Holography of the eye: a critical review, in “Laser Applications in Medicine and Biology, Vol. 2,” ed. M. L. Wolbarsht, Plenum Press, New York, pp. 77–132, 1974.CrossRefGoogle Scholar
  34. Wang, T. T., McDavid, J. M. and Lee, S. S. Photoacoustic detection of localized absorption regions. Appl. Optics 18:2354–2355, 1979.CrossRefGoogle Scholar
  35. Wickham, M. G., Worthem, D. M. and Binder, P. Physiological effects of laser trabeculotomy in rhesus monkey eyes. Invest. Ophthal. 16:624–628, 1977.Google Scholar
  36. Wise, G. N. Retinal Neovascularization. Trans. Amer. Ophthalmol. Soc. 54:729–826, 1956.Google Scholar
  37. Wolbarsht, M. L., Bessler, M. and Hickingbotham, D. A manual or automatic method for focusing a fundus camera independent of image quality. Proc. Int. Symp. Ophthalmol. Opt., Tokyo, pp. 111–113, 1978.Google Scholar
  38. Wolbarsht, M. L. and Landers, M. B., III. Lasers in ophthalmology: the path from theory to application. Appl. Opt. 18:1518–1526, 1979.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • M. L. Wolbarsht
    • 1
  1. 1.Departments of Ophthalmology and Biomedical EngineeringDuke University Eye CenterDurhamUSA

Personalised recommendations