Optics and Fibers

  • Stefano Sottini
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 34)


Optical fibers are by far the most attractive elements with which to create optical systems in the medical or biological applications of light. They are usually made up of long, thin glass rods that turn out to be very easy to handle. Moreover, their thinness and flexibility allow reaching inaccessible regions in the body without pain and discomfort to the patient.


Fiber Bundle Fiber Output Index Fiber Core Wall Plastic Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. S. Kapany, “Fiber Optics: Principles and Applications,” Academic Press, New York (1967).Google Scholar
  2. 2.
    R. Drougard and R. J. Potter, “Fiber Optics” in: “Advanced Optical Techniques,” (Ed. A. C.S. Van Heel), 401, North Holland Publishing Company, Amsterdam (1967).Google Scholar
  3. 3.
    H. G. Unger, “Planar Optical Waveguides and Fibres,” Clarendon Press, Oxford (1978).Google Scholar
  4. 4.
    D. Marcuse, “Light Transmission Optics,” Van Nostrand Reinhold Company, New York (1972).Google Scholar
  5. 5.
    D. Gloge, “Weakly Guiding Fibers,” Appl. Opt., 10, 2252 (1971).CrossRefGoogle Scholar
  6. 6.
    T. Uchida, M. Furukawa, I. Kitano, K. Koizumi and H. Matsumura, “Optical Characteristics of a Light Focusing Fiber Guide and its Applications,” IEEE J. Quant. Elect., QU-6, no. 10, 606 (1970).Google Scholar
  7. 7.
    c.f. “Infrarouge Purposil” and “Ultraviolette Tetrasil,” Quartz and Silice, Nemours, France.Google Scholar
  8. 8.
    P. F. Checcacci, A. M. Scheggi, M. Brenci, “R. F. Induction Furnace for Silica — Fibre Drawing,” Electr. Lett., 12, 11 (1976).CrossRefGoogle Scholar
  9. 9.
    P. Kaiser, “Contamination of Furnace Drawn Silica Fibers,” Appl. Opt., 16, 701 (1977).MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Brenci, P. F. Checcacci, R. Falciai and A. M. Scheggi, “Contamination of Furnace Drawn Silica Fibers,” Comment: Appl. Opt., 16, no. 12, 3084 (1977).CrossRefGoogle Scholar
  11. 11.
    G. Maniré, “Telecommunications Optical Fibers Manufacturizing Methods,” Atti XXIII Congr. Int. per l’Elettrom., Roma, 283 Rome (1978).Google Scholar
  12. 12.
    K. Koizumi, Y. Ikeda, I. Kitano, M. Furukawa and T. Sumimoto, “New Light-Focusing Fibres Made by a Continuous Process,” Appl. Opt., 13, 255–260 (1974).CrossRefGoogle Scholar
  13. 13.
    M. Epstein, “Fiber Optics in Medicine,” Proc. SPIE 77 (1976).Google Scholar
  14. 14.
    J. D. Archer, “Fiber Optics: Glass vs. Plastic,” Opt. Spectra, 31 (1973).Google Scholar
  15. 15.
    Fibers of this kind are fabricated by LUMATEC GmbH, Munich.Google Scholar
  16. 16.
    D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper and L. M. Hobrock, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett., 33, 28 (1978).CrossRefGoogle Scholar
  17. 17.
    H. Nishihara, T. Inoue and J. Koyama, “Low Loss Parallel-Plate Waveguide at 10.6 μm,” Appl. Phys. Lett., 25, no. 7, 391 (1974).CrossRefGoogle Scholar
  18. 18.
    E. Garmire, T. McMahon and M. Bass, “Low-loss Propagation and Polarization Rotation in Twisted Infrared Metal Waveguides,” Appl. Phys. Lett., 34, 35 (1979).CrossRefGoogle Scholar
  19. 19.
    H. Krammer, “Light Waves Guided by a Single Curved Metallic Surface,” Appl. Opt., 17, no. 2, 316 (1978).CrossRefGoogle Scholar
  20. 20.
    M. E. Marhic, L. I. Kwan and M. Epstein, “Optical Surface Waves Along a Toroidal Metallic Guide,” Appl. Phys. Lett., 33, 609 (1978).CrossRefGoogle Scholar
  21. 21.
    H. Ohzu, T. Sawatari and K. Sayanagi, “Image Transmission Characteristics of Fiber Bundles,” Japan J. Appl. Phys., 4, Suppl. I, 323 (1965).Google Scholar
  22. 22.
    N. S. Kapany and T. Sawatari, “Fiber Optics, XIV. Statistical Evaluation of Fiber Optics Imagery,” J.O.S.A., 61, 314 (1971).CrossRefGoogle Scholar
  23. 23.
    C. J. Koester, “Wavelength Multiplexing in Fiber Optics,” J.O.S.A., 58, no. 1, 63 (1968).CrossRefGoogle Scholar
  24. 24.
    S. E. Schacham, M. E. Marhic, C. Kot and M. Epstein, “Coupling of Rigid to Flexible Imaging Multifibers,” Appl. Opt., 17, no. 23, 3818 (1978).CrossRefGoogle Scholar
  25. 25.
    M. K. Barnoski, “Coupling Components for Optical Fiber Waveguides,” in: “Fundamentals of Optical Fiber Communications,” (Ed. M. K. Barnoski), Academic Press, New York (1976).Google Scholar
  26. 26.
    R. M. Dwyer and M. Bass, “Lasers in Medicine,” in: “Laser Applications,” (Ed. Monte Ross), Vol. 3, Academic Press, New York (1977).Google Scholar
  27. 27.
    P. Kiefhaber, G. Nath and K. Moritz, “Endoscopical Control of Massive Gastrointestinal Hemorrhage by Irradiation with a High-Power Neodymium YAG Laser,” Progr. in Surg., 15, 140–155 (1977).Google Scholar
  28. 28.
    K. Haverkampf, private communication.Google Scholar
  29. 29.
    W. Mautner, “High Energy Waveguides,” in: “Endoscopy,” (Ed. Berci), Appleton Century Crofts (1976).Google Scholar
  30. 30.
    N. C. Paek and A. L. Weaver, “Formation of a Spherical Lens at Optical Fiber Ends with a CO2 Laser,” Appl. Opt., 14, no. 2, 294 (1975).CrossRefGoogle Scholar
  31. 31.
    M. Sottini, S. Briani, G. C. Righini, V. Russo and S. Sottini, “Laser Application in Experimental Neurosurgery by Means of Optical Fibres Ended with a Focusing System,” Proc. X European Congress of Intern. College of Surgeons, Milan (1977).Google Scholar
  32. 32.
    G. C. Righini, V. Russo and S. Sottini, “Le Fibre Ottiche in Medicina,” Alta Frequenza, 47, no. 3, 165 (1978).Google Scholar
  33. 33.
    C. T. Chang and D. C. Auth, “Radiation Characteristics of a Tapered Cylindrical Optical Fiber,” J.O.S.A., 68, no. 9, 1191 (1978).CrossRefGoogle Scholar
  34. 34.
    D. C. Auth, P. I. Doty, D. Neal, D. Heimbach, R. Wentworth, J. Colocousis and P. W. Curreri, “The Laser Blade: A New Laser Scalpel,” in: Proc. 2nd Int. Symp. on Laser Surgery, Dallas (1977).Google Scholar
  35. 35.
    S. A. Robrish, A. F. LeRoy, B. M. Chassy, J. J. Wilson and M. I. Krichevsky, “Use of a Fiber Optic Probe for Spectral Measurements and the Continuous Recording of the Turbidity of Growing Microbial Cultures,” Appl. Microbiol., 21, no. 2, 278–287 (February 1971).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Stefano Sottini
    • 1
  1. 1.Instituto di Ricerca sulle Onde Elettromagnetiche del C.N.R.FirenzeItaly

Personalised recommendations