Fast Reactions in Photosynthesis

  • G. S. Beddard
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 34)


Photosynthesis is the conversion of light energy into stabilised chemical energy via light absorption by a pigment. Subsequent energy migration, trapping in a reaction centre and the resulting oxidation-reduction reactions, which (in green plants), use electrons from water to reduce carbon dioxide to carbohydrate and release oxygen into the atmosphere. It is somewhat remarkable when one considers the complexity of green plants, or even of photosynthetic bacteria and algae, that the first chemical reaction, an electron transfer from a complex of chlorophyll molecules, has taken place in less than one nanosecond after light absorption.


Reaction Centre Green Plant Photosynthetic Bacterium Primary Donor Streak Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.K. Clayton, “Light and Living Matter Volume 2”, Kreiger Publishing Company, Huntington, New York (1977).Google Scholar
  2. 2.
    D.C. Fork, Photosynthesis, in: “The Science of Photobiology” K.C. Smith, ed., Plenum, New York (1977).Google Scholar
  3. 3.
    E. Robinowich and Govindjee, “Photosynthesis”, Wiley, New York (1969).Google Scholar
  4. 4.
    Govindjee and R. Govindjee, “The Absorption of Light in Photosynthesis”, Scientific American 231:68 (1974).Google Scholar
  5. 5.
    Govindjee (ed.) “Bioenergetics of Photosynthesis”, Academic Press, London (1975).Google Scholar
  6. 6.
    B. Ke, “Current Topics in Bioenergetics — Photosynthesis, Part A” D. Sanadi and L. Vernon, ed., Academic Press, London (1977).Google Scholar
  7. 7.
    J. Amesz and A. Van-Gorkom, Ann. Rev. Plant Physiol., 29:47 (1978).CrossRefGoogle Scholar
  8. 8.
    K. Sauer, Accounts Chem. Res., 11:257 (1978).CrossRefGoogle Scholar
  9. 9.
    W. Butler, Ann. Rev. Plant Physiol., 29:345 (1978).CrossRefGoogle Scholar
  10. 10.
    J. Barber (ed.), “Topics in Photosynthesis Volumes 1–3” Elsevier, Amsterdam (1979).Google Scholar
  11. 11.
    “Chlorophyll Organisation and Energy Transfer in Photosynthesis” Ciba Foundation Symposium, 6l (new series), Excerpta Medica, Amsterdam (1979).Google Scholar
  12. 12.
    J.M. Olson and G. Hind (eds.), “Chlorophyll-Proteins, Reaction Centres and Photosynthetic Membranes”, Brookhaven Symposium on Biology 28, Brookhaven National Lab., New York, BNL50530, (1977).Google Scholar
  13. 13.
    G.S. Beddard, “Chemical Aspects of Photosynthesis” in Specialist Periodical Report on Photochemistry, Vol. 8, The Chemical Society, (1978).Google Scholar
  14. 14.
    T. Förster, Ann. Physik, 2:55 (1948).MATHCrossRefGoogle Scholar
  15. 15.
    T. Förster, “Delocalised Excitation and Excitation Transfer”, in: Modern Quantum Chemistry, O. Sinanoglu, ed., Academic Press, New York (1965).Google Scholar
  16. 16.
    R. Fenna and B. Matthews, Nature, 258:573 (1975).CrossRefGoogle Scholar
  17. 17.
    R. Fenna and B. Matthews, see Ref. 12, p170.Google Scholar
  18. 18.
    G.S. Beddard and G. Porter, Nature, 260:360 (1976).CrossRefGoogle Scholar
  19. 19.
    R. Park and J. Biggins, Science, 144:1009 (1964).CrossRefGoogle Scholar
  20. 20.
    L.N.M. Duysens, J. Amesz and B. Kamp, Nature, 190:510 (1961).CrossRefGoogle Scholar
  21. 21.
    R. Hill and F. Bendall, Nature, 186:136 (1960).CrossRefGoogle Scholar
  22. 22.
    R. Emerson and W. Armold, J. Gen. Physiol, 15:91 (1932).CrossRefGoogle Scholar
  23. 22a.
    R. Emerson and W. Armold, J. Gen. Physiol, 15:391 (1932).CrossRefGoogle Scholar
  24. 23.
    J. Bassham, Annu. Rev. Plant Physiol., 15:101 (1964).CrossRefGoogle Scholar
  25. 24.
    M.D. Hutch and C. Slack, Annu. Rev. Plant Physiol, 21:141 (1970).CrossRefGoogle Scholar
  26. 25.
    O. Bjorkman and J. Berry, Scientific American, 229:80 (1973).CrossRefGoogle Scholar
  27. 26.
    Govindjee (ed.), in “Ultrafast Reactions in Photosynthesis” (1978).Google Scholar
  28. 26a.
    Govindjee (ed.), Photochemistry and Photobiology, 28, 935 (1978).Google Scholar
  29. 27.
    P. Mathis, J. Hareman and M. Yates, in Ref. 12, p 267.Google Scholar
  30. 28.
    J. Hareman and P. Mathis, Biochim. Biophys. Acta, 440; 346 (1977).Google Scholar
  31. 29.
    J. Van Best and P. Mathis, Biochim. Biophys Acta, 503:178 (1975).Google Scholar
  32. 30.
    M. Rockley, M.W. Windsor, R. Cogdell and W. Parson, Proc. Natl. Acad. Sci. (U.S.), 72:2251 (1975).CrossRefGoogle Scholar
  33. 31.
    K. Kaufmann, P. Dutton, T. Netzel, J. Leigh and P. Rentzepis, Science, 188:1301 (1975).CrossRefGoogle Scholar
  34. 32.
    A. Campillo and S. Shapiro, Photochem. and Photobiol, 28:975 (1978).CrossRefGoogle Scholar
  35. 33.
    C. Tredwell, J. Synowiec, G. Searle, G. Porter and J. Barber, Photochem. and Photobiol., 28:1013 (1978).CrossRefGoogle Scholar
  36. 34.
    G. Fleming and G.S. Beddard, Optics and Laser Technology, 10 257 (1978).CrossRefGoogle Scholar
  37. 35.
    G. Beddard, G. Fleming, G. Porter, J. Searle and J. Synowiec, Biochim. Biophys. Acta, 545:165 (1979).CrossRefGoogle Scholar
  38. 36.
    Govindjee, H. Mammond and H. Merkelo, Biophys. J., 12:809 (1972).CrossRefGoogle Scholar
  39. 37.
    C. Swenberg, N. Geacintor and J. Breton, Photochem. and Photobiol, 28:999 (1978).CrossRefGoogle Scholar
  40. 38.
    T. Monger and W. Parson, Biochim. Biophys. Acta, 460:393 (1977).CrossRefGoogle Scholar
  41. 39.
    W. Vredenberg and L.N.M. Duysens, Nature, 197:355 (1963).CrossRefGoogle Scholar
  42. 40.
    R. Clayton, Photochem. and Photobiol., 5:807 (1966).CrossRefGoogle Scholar
  43. 41.
    E. Gantt, C. Lipschultz and B. Zilinskas, in Ref. 12 p347.Google Scholar
  44. 42.
    E. Gantt, C. Lipschultz and B. Zilinskas, Biochem. Biophys. Acta, 430:375 (1976).CrossRefGoogle Scholar
  45. 43.
    E Gantt, Photochem and Photobiol., 26:685 (1977).CrossRefGoogle Scholar
  46. 44.
    J. Grabowski and E. Gantt, Photochem. and Photobiol., 28:39 (1978).CrossRefGoogle Scholar
  47. 45.
    G. Porter, C. Tredwell, G. Searle, J. Barber, Biochim. Biophys. Acta, 501:232 (1978).CrossRefGoogle Scholar
  48. 46.
    G. Searle, J. Barber, G. Porter and C. Tredwell, Biochim. Biophys. Acta, 501:246 (1978).CrossRefGoogle Scholar
  49. 47.
    D. Magde and M. Windsor, Chem. Phys. Lett., 27:31 (1974).CrossRefGoogle Scholar
  50. 48.
    B. Greene, R. Hochstrasser, and R. Weisman, J. Chem. Phys., 70:1247 (1979).CrossRefGoogle Scholar
  51. 49.
    R. Blankenship and W. Parson, Annu. Rev. Biochem., 47:635 (1978).CrossRefGoogle Scholar
  52. 50.
    R. Clayton and W. Sistrom, “The Photosynthetic Bacteria”, Plenum, New York (1978).Google Scholar
  53. 51.
    J. Katz, J. Norris, L. Shipman, M. Thurnauer and M. Wasielewski, Annu. Rev. Biophys. Bioeng., 7:393 (1978).CrossRefGoogle Scholar
  54. 52.
    L. Shipman, T. Cotton, J. Norris and J. Katz, Proc. Natl. Acad. Sci. (U.S.), 73:1791 (1976).CrossRefGoogle Scholar
  55. 53.
    D. Holten and M. Windsor, Annu. Rev. Biophys. Bioeng., 7:189 (1978).CrossRefGoogle Scholar
  56. 54.
    V. Shuvalov, V. Klimcv, A. Sharkov, J. Matireetz and P. Krukov, F.E.B.S. Letts., 91:135 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • G. S. Beddard
    • 1
  1. 1.Davy Faraday Research LaboratoryThe Royal Institution of Great BritainLondonEngland

Personalised recommendations