Vibrational Spectroscopy in Biology: Some New Concepts

  • Giuseppe Zerbi
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 34)


Following the general philosophy of this school we shall briefly discuss, on a personal basis, the contributions vibrational spectroscopy can give in the field of the study of biological materials. We shall focus on the specific contributions which laser Raman spectroscopy can provide, but will have to forcefully include the complementary information which can be obtained using infrared absorption spectroscopy as well as molecular dynamical calculations. In the discussion the role played in this kind of work by coherent and incoherent, elastic and inelastic neutron scattering experiments will become clear.


Raman Spectrum Normal Mode Local Mode Vibrational State Raman Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Zerbi, “Limitations of Force Constant Calculations in Large Molecules,” in: “Modern Trends in Vibrational Spectroscopy” (Ed. A. J. Barnes, W. J. Orville-Thomas) Elsevier Amsterdam (1977).Google Scholar
  2. 2.
    G. Zerbi, “Defects in Organic Crystals-Numerical Methods,” in: “Lattice Dynamics and Intermolecular Forces” (Ed. S. Califano) Academic Press (1975).Google Scholar
  3. 3.
    E. B. Wilson, J. C. Decius and P. C. Cross, “Molecular Vibrations,” McGraw-Hill (1965).Google Scholar
  4. 4a.
    W. H. Moore and S. Krimm, Biopolymers, 15, 2439 (1976);Google Scholar
  5. 4b.
    W. H. Moore and S. Krimm Ibid.15, 2465 (1976).Google Scholar
  6. 5.
    G. Placzek, “Handbuch der Radiologie,” 6 (1934).Google Scholar
  7. 6.
    G. Zerbi, “Molecular Vibrations of High Polymers,” in: Applied Spectroscopy Reviews (Ed. A. D. Brame), Vol. 2, Marcel Dekker, New York, 193 (1969).Google Scholar
  8. 7.
    L. Bellamy, “The Infrared Spectra of Complex Molecules,” Methuen, London (1975).Google Scholar
  9. 8.
    G. Herzberg, “Infrared and Raman Spectra of Polyatomic Molecules,” Van Nostrand, New York (1953).Google Scholar
  10. 9.
    M. Gussoni, S. Abbate and G. Zerbi, “Prediction of Infrared and Raman Intensities by Parametric Methods,” in: “Vibrational Spectroscopy, Modern Trends” (Eds. A. J. Barnes, W. J. Orville-Thomas) Elsevier, Amsterdam (1977).Google Scholar
  11. 10.
    M. Gussoni, “Vibrational Intensities by Parametric Methods,” in: Advances in Infrared and Raman Spectroscopy” (Eds. Clark, Hester), Vol. 6, Heyden, London (1980).Google Scholar
  12. 11.
    W. T. King and B. L. Crawford, J. Mol. Spectry8, 58 (1962).CrossRefGoogle Scholar
  13. 12a.
    G. Zerbi, Pure Applied Chemistry25, 501 (1971);Google Scholar
  14. 12b.
    G. Zerbi, Ibid. 36, 35 (1973).Google Scholar
  15. 13.
    G. Zerbi, “Recent Development of Vibrational Spectroscopy of Polymers: Dynamics and Spectra of Disordered Polymers,” in: “Advances in the Preparation and Properties of Stereoregular Polymers” (Eds. F. Ciardelli and R. Lenz) Reidel (1979).Google Scholar
  16. 14.
    M. Gussoni and G. Zerbi, J. Chem. Phys.60, 4362 (1974).CrossRefGoogle Scholar
  17. 15.
    G. Zerbi and M. Gussoni, Polymer, in press.Google Scholar
  18. 16.
    c.f. R. C. Lord and G. J. Thomas, Spectrochim. Acta, 23A, 2551 (1967).Google Scholar
  19. 17.
    T. Shimanouchi, in: “Structural Studies of Macromolecules by Spectroscopic Methods) (Ed. K. J. Ivin) Wiley (1976).Google Scholar
  20. 18.
    S. Mizushima and T. Shimanouchi, J. Am. Chem. Soc., 71, 1320 (1949).CrossRefGoogle Scholar
  21. 19.
    R. F. Shaufele and T. Shimanouchi, J. Chem. Phys., 47, 3605 (1967).CrossRefGoogle Scholar
  22. 20.
    c.f. S. Krimm, Indian J. Pure Applied Phys., 16, 335 (1978).Google Scholar
  23. 21.
    G. Capaccio, I. M. Ward, M. A. Wilding and G. W. Longman, J. Macromol. Sci. Phys., B15, 381 (1978).Google Scholar
  24. 22.
    R. G. Snyder, S. J. Krause and J. A. Scherer, J. Polymer Sci., Polymer Phys. Ed., 16, 1593 (1978).CrossRefGoogle Scholar
  25. 23.
    M. Tasumi, T. Shimanouchi and R. F. Schaufele, Polymer J., 2, 740 (1971).CrossRefGoogle Scholar
  26. 24.
    G. Zerbi and M. Gussoni, submitted to Macromolecules.Google Scholar
  27. 25.
    J. A. McCammon, B. R. Gelin and M. Karplus, Nature, 262, 325 (1976).CrossRefGoogle Scholar
  28. 26.
    R. S. Morgan and W. L. Peticolas, Int. J. Peptide Protein Res., 7, 361 (1975).CrossRefGoogle Scholar
  29. 27.
    M. Karplus, Bull. Am. Phys. Soc., 24, 353 (1979).Google Scholar
  30. 28.
    L. Piseri and G. Zerbi, J. Chem. Phys., 48, 3561 (1968).CrossRefGoogle Scholar
  31. 29.
    G. Zerbi, L. Piseri and F. Cabassi, Mol. Phys., 22, 241 (1971).CrossRefGoogle Scholar
  32. 30a.
    A. Rubcic and G. Zerbi, Macromolecules, 7, 754 (1974);CrossRefGoogle Scholar
  33. 30b.
    A. Rubcic and G. Zerbi Ibid., 759 (1974);Google Scholar
  34. 30c.
    A. Rubcic and G. Zerbi Chem. Phys. Lett., 34, 343 (1975).CrossRefGoogle Scholar
  35. 31.
    G. Zerbi and M. Sacchi, Macromolecules, 6, 692 (1973).CrossRefGoogle Scholar
  36. 32.
    P. Dean, Rev. Mod. Phys., 44, 1881 (1972).CrossRefGoogle Scholar
  37. 33.
    P. Dean and M. D. Bacon, Proc. Roy. Soc. (London) A 283, 64 (1965).MathSciNetGoogle Scholar
  38. 34.
    L. Genzel, F. Keilmann, T. P. Martin, G. Winterling, Y. Yacoby, N. Frölich and M. W. Makinen, Biopolymers, 15, 219 (1976).CrossRefGoogle Scholar
  39. 35.
    K. Itoh and T. Shimanouchi, Biopolymers, 9, 383 (1970).CrossRefGoogle Scholar
  40. 36.
    R. Tubino and G. Zerbi, J. Chem. Phys., 53, 1428 (1970).CrossRefGoogle Scholar
  41. 37.
    A. B. Dempster and G. Zerbi, J. Chem. Phys., 54, 3600 (1971).CrossRefGoogle Scholar
  42. 38.
    A. Lewis and H. A. Scheraga, Macromolecules, 5, 45 (1972).CrossRefGoogle Scholar
  43. 39.
    A. Lewis and H. A. Scheraga, Macromolecules, 4, 539 (1971).CrossRefGoogle Scholar
  44. 40.
    L. W. Tarasov, Soviet Phys. Solid State, English Transl., 3, 1039 (1961).Google Scholar
  45. 41.
    S. Trevino and H. Boutin, J. Macrom. Sci., A1, 723 (1967).CrossRefGoogle Scholar
  46. 42.
    V. S. Gupta, S. Trevino and H. Boutin, “Molecular Dynamics and Structure of Solids,” National Bureau of Standards, Pub. No. 301 (1969).Google Scholar
  47. 43.
    I. Behringer, in: “Molecular Spectroscopy,” Specialist Reports, The Chemical Society, London, Vol. 2 (1974);Google Scholar
  48. 43.
    I. Behringer, in: “Molecular Spectroscopy,” Specialist Reports, The Chemical Society, London, Ibid., Vol. 3 (1975).Google Scholar
  49. 44.
    I. Behringer, “Raman Spectroscopy” (Ed. H. Szymanski), Vol. 1, Plenum, New York (1967).Google Scholar
  50. 45.
    A. C. Albrecht, J. Chem. Phys., 34, 1476 (1961).CrossRefGoogle Scholar
  51. 46.
    F. Inagaki, M. Tasumi and T. Miyazawa, J. Mol. Spectry., 50, 286 (1974).CrossRefGoogle Scholar
  52. 47.
    S. Sufrà, G. Dellepiane, G. Masetti and G. Zerbi, J. Raman Spectroscopy, 6, 267 (1977).CrossRefGoogle Scholar
  53. 48.
    G. Zerbi, G. Masetti, G. Dellepiane and L. Nannicini, in: “Lasers in Photomedicine and Photobiology” (Eds. R. Pratesi and C. A. Sacchi) Springer, Heidelberg (1980).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Giuseppe Zerbi
    • 1
  1. 1.Istituto di ChimicaUniversità di TriesteTriesteItaly

Personalised recommendations