Lasers in Microfluorometry and Selective Photobiology

  • Alessandra Andreoni
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 34)

Abstract

The study of the fluorescence emission has been demonstrated to be a powerful technique of investigation in biology1-4. Two types of fluorescence can be considered: (i) the primary fluorescence of the biomolecules themselves or (ii) the secondary fluorescence of probes which specifically bind to the biomolecules to be studied. In case (i), UV excitation is usually needed and information on isolated biomolecules can be readily gained. Unfortunately, due to the overlap of the absorption spectra of many biological constituents, it is very difficult to study a specifical biomolecule in its natural environment (i.e. “in vivo”) by technique (i). This limitation is overcome by technique (ii) in many examples. In the following we shall restrict our attention to the case of DNA. Nowadays, many fluorescent probes, most of which belonging to the Acridine class, are available which are specific for DNA. In general, they exhibit fluorescence properties which depend on the mechanism by which they interact with the DNA. As a consequence, most of them show base-specific fluorescence. In addition, since the biological surrounding of the DNA usually influences its accessibility to the probe molecules, also “in vivo” studies have revealed to be useful.

Keywords

Phosphorus Toluene Hydrochloride Fluores Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Konev, “Fluorescence and Phosphorescence of Proteins and Nucleic Acids,” Plenum Press, New york (1967).CrossRefGoogle Scholar
  2. 2.
    S. Udenfried, “Fluorescence Assays in Biology and Medicine,” Vol. II, Academic Press, London, New York (1969).Google Scholar
  3. 3.
    L. Brand, and J. R. Gohlke, Fluorescence Probes for Structure, Ann. Rev. Biochem. 41:843 (1972).CrossRefGoogle Scholar
  4. 4.
    “Physico-Chemical Properties of Nucleic Acids,” Vol. I, J. Duchesne, ed., Academic Press, London, New York (1973).Google Scholar
  5. 5.
    “Topics in Applied Physics; Vol. XVIII: Ultrashort Light Pulses,” S. L. Shapiro, ed., Springer-Verlag, Berlin, Heidelberg, New York (1977).Google Scholar
  6. 6.
    A. Andreoni, C. A. Sacchi, and O. Svelto, Structural Studies of Biological Molecules via Laser-Induced Fluorescence: Acridine-DNA Complexes, in: “Chemical and Biochemical Applications of Lasers,” Vol.IV, C. Bradley Moore, ed., Academic Press, London, New York (1979).Google Scholar
  7. 7.
    A. Andreoni, P. Benetti, and C. A. Sacchi, Subnanosecond Pulses from a Single-Cavity Dye Laser, Appl. Phys. 7:61 (1974).CrossRefGoogle Scholar
  8. 8.
    R. Cubeddu, and S. De Silvestri, A Simple and Reliable Atmospheric Pressure Nitrogen Laser, Opt. Quant. Elect. 11:276 (1979).CrossRefGoogle Scholar
  9. 9.
    R. Cubeddu, S. De Silvestri, and O. Svelto, unpublished results.Google Scholar
  10. 10.
    C.A. Sacchi, O. Svelto, and G. Prenna, Pulsed Tunable Lasers in Cytofluorometry, Histochem. J. 6:251 (1974).CrossRefGoogle Scholar
  11. 11.
    A. Albert, “The Acridines,” E. Arnold Ltd, London (1966).Google Scholar
  12. 12.
    “Heterocyclic Compounds: Acridines (Vol. IX),” R. M. Acheson, ed., Interscience, New York (1973).Google Scholar
  13. 13.
    L. S. Lerman, Structural Considerations in the Interaction of DNA and Acridine, J. Mol. Biol. 3:18 (1961).CrossRefGoogle Scholar
  14. 14.
    N. J. Pritchard, A. Blake, and A. R. Peacocke, Modified Intercalation Model for the Interaction of Amino Acridines and DNA, Nature 212:1360 (1966).CrossRefGoogle Scholar
  15. 15.
    A. Andreoni, S. Cova, G. Bottiroli, and G. Prenna, Fluorescence of Complexes of Quinacrine Mustard with DNA: II) Dependence on the Staining Conditions, Photochem. Photobiol. 29:951 (1979).CrossRefGoogle Scholar
  16. 16.
    S. A. Latt, and S. Brodie, Fluorescent Probes of Chromosome structure, in “Excited States of Biological Molecules,” J. B. Birks, ed., Wiley-Interscience, London, New York (1976).Google Scholar
  17. 17.
    J. P. Schreiber, and M. P. Daune, Fluorescence of Complexes of Acridine Dye with Synthetic Polydeoxyribonucleotides: A Physical Model of Frameshift Mutation, J. Mol. Biol. 83:487 (1974).CrossRefGoogle Scholar
  18. 18.
    B. Weisblum, and P. L. de Haseth, Quinacrine, a Chromosome Stain Specific for Deoxyadenylate-Deoxythymidylate-Rich Regions in DNA, Proc. Nat. Acad. Sci. USA 69:629 (1972).CrossRefGoogle Scholar
  19. 19.
    A. Andreoni, A. Longoni, C. A. Sacchi, O. Svelto, and G. Bottiroli, Laser-Induced Fluorescence of Biological Molecules, in “Tunable Lasers and their Applications,” A. Mooradian, T. Jaeger, and P. Stokseth, ed.s, Springer-Verlag, Berlin, Heidelberg, New York (1976).Google Scholar
  20. 20.
    S. J. Strickler, and R. A. Berg, Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules, J. Chem. Phys. 37:814 (1962).CrossRefGoogle Scholar
  21. 21.
    G. Bottiroli, G. Prenna, A. Andreoni, C. A. Sacchi, and O. Svelto, Fluorescence of Complexes of Quinacrine Mustard with DNA: I) Influence of the DNA Base Composition on the Decay Time in Bacteria, Photochem. Photobiol. 29:23 (1979).CrossRefGoogle Scholar
  22. 22.
    A. Di Marco, F. Arcamone, and F. Zunino, Daunomycin (Daunorubicin) and Adriamycin and Structural Analogues: Biological Activity and Mechanisms of Action, in “Antibiotics. Vol. III Mechanism of Action of Antimicrobial and Antitumor Agents,” J. W. Corcoran, and F. E. Hahn, ed.s, Springer-Verlag, Berlin, Heidelberg, New York (1974).Google Scholar
  23. 23.
    A. Andreoni, unpublished results.Google Scholar
  24. 24.
    A. Andreoni, C. A. Sacchi, G. Bottiroli, and M. Salmona, to be published.Google Scholar
  25. 25.
    V. S. Letokhov, Future Applications of Selective Laser Photophysics and Photochemistry, in “Tunable Lasers and Applications,” A. Mooradian, T. Jaeger, and P. Stokseth, ed.s, Springer-Verlag, Berlin, Heidelberg, New York (1976).Google Scholar
  26. 26.
    P. G. Kryukov, V. S. Letokhov, D. N. Nikogosyan, A. V. Borodavkin, E. I. Budowsky, and N. A. Simukova, Multiquantum Photoreactions of Nucleic Acid Components in Aqueous Solution by Powerful Ultraviolet Picosecond Radiation, Chem. Phys. Lett. 61:375 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Alessandra Andreoni
    • 1
  1. 1.Centro di Elettronica Quantistica e Strumentazione Elettronica del CNRIstituto di Fisica del PolitecnicoMilanoItaly

Personalised recommendations