Advertisement

Laser Sources

  • Pio Burlamacchi
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 34)

Abstract

Following the basic principles of the laser conceived by Townes and Schawlow in 1958, the first laser was operated in the visible region of the spectrum in 1960 by Theodore Maiman. Since that time a large number of different kinds of lasers have appeared, many of them developing into reliable, easy to use, commercially available lasers. We will refer to this class of lasers as the so called “classical laser sources”. They have reached such a technological maturity and such well established fields of application that it is hard to think that they will suffer drastic changes or improvements in the near future.

Keywords

Laser Source Excimer Laser Solid State Laser Stimulate Raman Scattering Transverse Electric 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography and References

  1. 1.
    A. L. Bloom, “Gas Lasers”, John Wiley and Sons, New York (1968).Google Scholar
  2. 2.
    S. S. Charschan, Ed., “Lasers in Industry”, Van Nostrand Reinhold Co., New York (1972).Google Scholar
  3. 3.
    B. A. Lengyel, “Lasers”, (2nd Ed.), John Wiley and Sons, New York (1971).Google Scholar
  4. 4.
    A. Maitland, and M. H. Dunn, “Laser Physics”, North Holland Publishing Co., Amsterdam (1969).Google Scholar
  5. 5.
    R. H. Pantell, and H. E. Puthoff, “Fundamental of Quantum Electronics”, John Wiley and Sons, New York (1969).Google Scholar
  6. 6.
    R. J. Pressley, Ed., “CRC Handbook of Lasers”, The Chemical Rubber Co., Cleveland (1971).Google Scholar
  7. 7.
    M. Sargent III, M. O. Scully, and W. E. Lamb Jr., “Laser Physics”, Addison-Wesley Pub. Co., Reading (1974).Google Scholar
  8. 8.
    A. E. Siegman, “An Introduction to Lasers and Masers”, McGraw-Hill, New York (1971).Google Scholar
  9. 9.
    D. C. Sinclair, and W. E. Bell, “Gas Laser Technology”, Holt., Rinehart and Winston, New York (1969).Google Scholar
  10. 10.
    W. V. Smith, and P. P. Sorokin, “The Laser”, McGraw-Hill, New York (1966).Google Scholar
  11. 11.
    E. L. Steele, “Optical Lasers in Electronics”, John Wiley and Sons, New York (1968).Google Scholar
  12. 12.
    O. Svelto, “Principles of Lasers”, Plenum Pub. Co., NeW York-London (1976).Google Scholar
  13. 13.
    W. Koechner, “Solid State Laser Engineering”, Springer Verlag, Berlin-Heidelberg-New York (1976).Google Scholar
  14. 14.
    A. Yariv, “Quantum Electronics”, (2nd Ed.), John Wiley and Sons, New York (1975).Google Scholar
  15. 15.
    A. De Maria, Review of CW High Power CO2 Lasers, Proc. IEEE 61:731 (1973).CrossRefGoogle Scholar
  16. 16.
    P. W. Pace, and M. Lacombe, A Sealed High Repetition Rate TEA CO2 Laser, IEEE J.Quan. Elec. QE 14:263 (1968).CrossRefGoogle Scholar
  17. 17.
    O. R. Wood II, High Pressure Pulsed Molecular Lasers, Proc. IEEE 62:355 (1974).CrossRefGoogle Scholar
  18. 18.
    F.P. Shäfer, Ed., “Dye Lasers”, Springer Verlag, Berlin-Heidelberg-New York (1979).Google Scholar
  19. 19.
    Ch. K. Rhodes, Ed., “Excimer Lasers”, Springer Verlag, Berlin-Heidelberg-New York (1979).Google Scholar
  20. 20.
    Special Issue on Excimer Laser, IEEE J. Quan. Elec. OE 15, May 1979.Google Scholar
  21. 21.
    J. J. Ewing, Rare Gas Halides Lasers, Physics Today, May 1978, p. 32.Google Scholar
  22. 22.
    M. Rokni, J. A. Mangano, J. H. Jacob, and J. C. Hsia, Rare Gas Floride Lasers, IEEE J. Quan. Elec. QE 14:464 (1978).CrossRefGoogle Scholar
  23. 23.
    H. Pummer, K. Hohla, M. Diegelmann, and J. P. Reilly, Discharge Pumped F2 Laser at 1580 A, Opt. Comm. 28:104 (1979).CrossRefGoogle Scholar
  24. 24.
    A. J. Andrews, A. J. Kearsley, and C. E. Webb, A KrF Fast Discharge Laser in Mixture Containing NF3, N2F4OrSf6, Opt. Comm. 20:265 (1977).CrossRefGoogle Scholar
  25. 25.
    R. S. Taylor, W. J. Sarjeant, A. J. Alcock, and K. E. Leopold, Glow Discharge Characteristics of a 0.4 J Multiatmosphere Rare Gas-Halide Laser, Opt. Comm. 25:231 (1978).CrossRefGoogle Scholar
  26. 26.
    R. C. Sze, and P. B. Scott, 1/4-J Discharge Pumped KrF Laser, Rev. Sci. Ins. 49:772 (1978).CrossRefGoogle Scholar
  27. 27.
    J. C. Walling, and O. G. Peterson, High Gain Laser Performance in Alexandrite, Digest of Technical Papers. IEEE/OSA Conference on Laser Engineering and Applications, Washington D.C., Paper 14.7 (1979).Google Scholar
  28. 28.
    P. F. Moulton, and A. Mooradian, Continuously Tunable CW Ni:Mg F2 Lasers, Digest of Technical Papers. IEEE/OSA Conference on Laser Engineering and Applications, Washington D.C., Paper 14.8 (1979).Google Scholar
  29. 29.
    P. F. Moulton, and A. Mooradian, Efficient CW Optically Pumped Ni:MgF2 Laser, Opt. Letters, 3:164 (1979).CrossRefGoogle Scholar
  30. 30.
    S. Gabay, I. Smilanski, G. Erez, and L. A. Levin, Do-it-yourself Copper-Vapor Laser, Laser Focus, June 1979, p. 70.Google Scholar
  31. 31.
    A. A. Isaev, M. A. Kazaryan, and G. G. Petrash, Sov. Phy. JEPT. 16:27 (1972).Google Scholar
  32. 32.
    S. Gabay, I. Smilanski, L. A. Levin, and G. Erez, Comparison of CuCl, CuCr and CuI as Lasants for Copper-Vapor Lasers, IEEE J. Quan. Elec. QE 13:364 (1977).CrossRefGoogle Scholar
  33. 33.
    A. E. Siegman, A Canonical Formulation for Analyzing Multielement Unstable Resonators, IEEE J. Quan. Elec. QE 12:35 (1979).CrossRefGoogle Scholar
  34. 34.
    R. L. Herbst, H. Komine, and R.L. Byer, A 200 mJ Unstable Resonator Nd-YAG Oscillator, Opt. Comm. 21:5 (1977).CrossRefGoogle Scholar
  35. 35.
    G. Marowski, and K. Kaufman, Influence of Spatial Hole Burning on the Output Power of a CW Dye Ring Laser, IEEE J. Quan. Elec. QE 12:206 (1976).Google Scholar
  36. 36.
    T. F. Johnston Jr., W. P. Proffit, and G. H. Williams, A Stabilized-Single Frequency CW Dye Ring Laser, Digest of Technical Papers. IEEE/OSA Conference on Laser Engineering and Applications, Washington D.C., Paper 14.2 (1979).Google Scholar
  37. 37.
    P. W. Smith, Stabilized Single Frequency Output from a Long Laser Cavity, IEEE J. Quan. Elec. QE 1:343 (1965).CrossRefGoogle Scholar
  38. 38.
    A. Mooradian, T. Jaeger, and P. Stokseth, Eds., “Tunable Laser and Applications”, Springer Verlag, Berlin-Heidelberg-New York (1976).Google Scholar
  39. 39.
    S. L. Shapiro, Ed., “Ultrashort Light Pulses”, Springer Verlag, Berlin-Heidelberg-New York (1977).Google Scholar
  40. 40.
    C. V. Shank, E. P. Ippen, and L. S. Shapiro, Eds., “Picosecond Phenomena”, Springer Verlag, Berlin-Heidelberg-New York (1978).Google Scholar
  41. 41.
    E. P. Ippen, and C. V. Shank, Dynamic Spectroscopy and Subpico-second Pulse Compression, App. Phy. Lett. 27:488 (1975).CrossRefGoogle Scholar
  42. 42.
    J. P. Heritage, and R. K. Jain, Subpicosecond Pulses from a Tunable CW Mode-Locked Dye Laser, App. Phy. Lett. 32:101 (1978).CrossRefGoogle Scholar
  43. 43.
    J. P. Ryan, L. S. Goldberg, and D. G. Bradley, Comparison of Synchronous Pumping and Passive Mode-Locking of CW Dye Laser for the Generation of Picosecond and Subpicosecond Light Sources, Opt. Comm. 27:127 (1978).CrossRefGoogle Scholar
  44. 44.
    E. I. Moses, J. J. Turner, and C. L. Tang, Mode-Locking of Laser Oscillators by Injection Locking, App. Phy. Lett. 28:258 (1976).CrossRefGoogle Scholar
  45. 45.
    J. L. Lachambre, Injection Mode-Locking and Mode Selection in TEA-CO2 Laser Oscillator, IEEE J. Quan. Elec. QE 12:756 (1976).CrossRefGoogle Scholar
  46. 46.
    P. B. Corkum, Injection Mode-Locking, Laser Focus, June 1979, p.80.Google Scholar
  47. 47.
    A. D. White, Frequency Stabilization of Gas Lasers, IEEE J. Quan. Elec. QE 1:139 (1965).Google Scholar
  48. 48.
    G. Birnbaum, Frequency Stabilization of Gas Lasers, Proc. IEEE 55:1015 (1967).CrossRefGoogle Scholar
  49. 49.
    W. J. Tomlinson, and R. Fork, Frequency Stabilization of a Gas Laser, App. Opt. 8:121 (1969).CrossRefGoogle Scholar
  50. 50.
    T. J. Ryan, D. G. Youmans, L. A. Hackel, and S. Ezechiel, Molecular Beam Stabilized Argon Laser, App. Opt. 21:30 (1972).Google Scholar
  51. 51.
    R. L. Barger, J. B. West, and T. C. English, App. Phy. Lett. 27:31 (1975).CrossRefGoogle Scholar
  52. J. H. Hall, Frequency Stabilization of CW Dye Laser, Digest of Technical Papers. IEEE/OSA Conference on Laser Engineering and Applications, Washington D.C., Paper 14.1 (1979).Google Scholar
  53. 52.
    F. T. Johnson Jr., W. P. Proffit, and G. H. Williams, A Stabilized-Single-Frequency CW Ring Dye Laser with Multiwatt Output. Sub Megahertz Jitter and 30 GHz Continuous Scan, Digest of Technical Papers. IEEE/OSA Conference on Laser Engineering and Applications, Washington D.C., Paper 14.2 (1979).Google Scholar
  54. 53.
    R. A. Baumgarter, and R. L. Byer, Optical Parametric Amplifications, IEEE J. Quan. Elec. QE 15:432 (1979).CrossRefGoogle Scholar
  55. 54.
    R. Pixton, Tripling Yag Frequency, Laser Focus, July 1978, p.66.Google Scholar
  56. 55.
    K. Kato, IEEE J. Quan. Elec. QE 10:616 (1974).CrossRefGoogle Scholar
  57. 56.
    R. M. Waynant, and R. C. Elton, Review of Short Wavelength Laser Research, Proc. IEEE 64:1059 (1976).CrossRefGoogle Scholar
  58. 57.
    F. B. Dunning, Tunable-Ultraviolet Generation by Sum Frequency Mixing, Laser Focus, May 1978, p. 72.Google Scholar
  59. 58.
    R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, Tunable Coherent Vacuum-Ultraviolet Generation in Atomic Vapor, Phy. Rev. Lett. 32:343 (1974).CrossRefGoogle Scholar
  60. 59.
    R. Wallenstein, and T. W. Hänsch, Powerful Dye Laser Oscillator. Amplifier System for High Resolution Spectroscopy, Opt. Comm. 14:353 (1976).CrossRefGoogle Scholar
  61. 60.
    P. Drell, and S. Chu, A Megawatt Dye Laser Oscillator-Amplifier System for High Resolution Spectroscopy, Opt. Comm. 28:343 (1979).CrossRefGoogle Scholar
  62. 61.
    V. I. Tomin, A. J. Alcock, W. J. Sarjeant, and K. E. Leopold, Tunable Narrow Bandwidth, 2 MW Dye Laser Pumped by a KrF* Discharge Laser, Opt. Comm. 28:336 (1979).CrossRefGoogle Scholar
  63. 62.
    L. F. Mollenauer, and D. H. Olson, Broadly Tunable Lasers Using Color Centers, App. Phy. Lett. 24:386 (1974).CrossRefGoogle Scholar
  64. 63.
    D. J. Jackson, J. E. Lawler, and T. W. Hänsch, Broadly Tunable Pulsed Laser for the Infrared Using Color Centers, Opt. Comm. 29:357 (1979).CrossRefGoogle Scholar
  65. 64.
    D. J. Erlich, and R. M. Osgood, Optically Pumped Photodissociation Lasers, Digest of Technical Papers. IEEE/OSA Conference on Laser Engineering and Applications, Washington P.C., Paper 15.3 (1979).Google Scholar
  66. 65.
    C. R. Jones, Optically Pumped Mid-Infrared Lasers, Laser Focus, August 1978, p. 68.Google Scholar
  67. 66.
    T. Y. Chang, Optically Pumped Submillimeter Wave Sources, IEEE Transaction on Microwave MTT 22:983 (1974).CrossRefGoogle Scholar
  68. 67.
    J. Cohen, M. Clere, and P. Rigny, A Coherent Light Source, Widely Tunable down to 16 μm by Stimulated Raman Scattering, Opt. Comm. 21:387 (1977).CrossRefGoogle Scholar
  69. 68.
    W. Hartig, and W. Schmidt, A Broadly Tunable IR Waveguide Raman Laser Pumped by a Dye Laser, App. Phy. 18:235 (1979).CrossRefGoogle Scholar
  70. 69.
    J. Paisner, and S. Hargrove, A Tunable Laser System for the Ultraviolet Visible and Infrared Regions, Energy and Tech. Rev, March 1979.Google Scholar
  71. 70.
    T. R. Loree, C. R. Sze, D. L. Barker, and P. B. Scott, New Lines in the UV:SRS of Excimer Laser Wavelengths, IEEE J. Quan. Elec. QE 15:357 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Pio Burlamacchi
    • 1
  1. 1.Istituto di Elettronica Quantistica del CNRFirenzeItaly

Personalised recommendations