Hot-Carrier Degradation During Dynamic Stress

  • W. Weber
  • M. Brox
  • R. Bellens
  • P. Heremans
  • G. Groeseneken
  • A. v. Schwerin
  • H. E. Maes


In Chapter 1, the degradation of MOS transistors under DC stress conditions was considered. In a real circuit, however, most of the devices are operated dynamically, on account of which the degradation under AC stress conditions has gained increased attention. The most important question in these studies is whether the AC degradation can or cannot be predicted based on a set of DC degradation measurements. When the prediction based on DC measurements stands true, the AC degradation can be studied as a quasistatic process. When, however, the extrapolation turns out to be invalid, physical insight should be obtained for the deviating behavior.


Duty Cycle Gate Voltage Dynamic Stress Stress Time Interface Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Weber, C. Werner, and G. Dorda. “Degradation of n-MOS transistors after pulsed stress.” IEEE Elec. Dev. Lett., vol. EDL-5, pp. 518–520, 1984.CrossRefGoogle Scholar
  2. 2.
    W. Weber, C. Werner, and A. v. Schwerin. “Lifetimes and substrate currents in static and dynamic hot-carrier degradation.” IEDM Tech. Dig., pp. 390–393, 1986.Google Scholar
  3. 3.
    W. Weber. “Dynamic stress experiments for understanding hot-carrier degradation phenomena.” IEEE Trans. Elec. Dev., vol. 35, pp. 1476–1486, 1988.CrossRefGoogle Scholar
  4. 4.
    Y. Igura and E. Takeda. “Hot-carrier degradation mechanism under AC-stress in MOSFETs.” Proc. Symp. VLSI Techn., pp. 47–48, 1987.Google Scholar
  5. 5.
    J. Y. Choi, P. K. Ko, and C. Hu. “Hot-carrier-induced MOSFET degradation: AC versus DC stressing.” Proc. VLSI Symp., pp. 45–46, 1987.Google Scholar
  6. 6.
    K. M. Cham, H. S. Fu, and Y. Nishi. “The dependence of hot-carrier degradation on AC stress waveforms.” IRPS ‘88, pp. 30–33, 1988.Google Scholar
  7. 7.
    T.-C. Ong, K. Seki, P. K. Ko, and C. Hu. “Hot-carrier-induced degradation in p-MOSFETs under AC stress.” IEEE Elec. Dev. Lett., vol. EDL-9, pp. 211–213, 1988.CrossRefGoogle Scholar
  8. 8.
    K.-L. Chen, S. Sailer, and R. Shah. “The case of AC stress in the hot-carrier effect.” IEEE Trans. Elec. Dev., vol. ED-33, pp. 424–426, 1986.CrossRefGoogle Scholar
  9. 9.
    J. Y. Choi, P. K. Ko, and C. Hu. “Hot-carrier-induced MOSFET degradation under AC stress.” IEEE Elec. Dev. Lett., vol. EDL-8, pp. 333–335, 1987.CrossRefGoogle Scholar
  10. 10.
    M. M. Kuo, K. Seki, P. M. Lee, J. Y. Choi, P. K. Ko, and C. Hu. “Simulation of MOSFET lifetime and AC hot-electron stress.” IEEE Trans. Elec. Dev., vol. 35, pp. 1004–1011, 1988.CrossRefGoogle Scholar
  11. 11.
    R. Bellens, P. Heremans, G. Groeseneken, and H. E. Maes. “Analysis of hot-carrier degradation in AC stressed n-channel MOS transistors using the charge-pumping technique.” J. de Physique, vol. 49, pp. C4–651-654, 1988.Google Scholar
  12. 12.
    R. Bellens, P. Heremans, G. Groeseneken, and H. E. Maes. “Analysis of mechanisms for the enhanced degradation during AC hot-carrier stress of MOSFETs.” IEDM Tech. Dig., pp. 212–215, 1988.Google Scholar
  13. 13.
    M. Aoki, K. Yano, T. Masuhara, and K. Komiyaji. “Hot-carrier effects under pulsed stress in CMOS devices.” Proc. VLSI Symp., pp. 49–50, 1987.Google Scholar
  14. 14.
    H. Wang, M. Davis, and R. Lahri. “Transient substrate current effect on n-channel MOSFET device lifetime. IEDM Tech. Dig., pp. 216–219, 1988.Google Scholar
  15. 15.
    T. Horiuchi, H. Mikoshiba, K. Nakamura, and K. Hamano. “A simple method to evaluate device lifetime due to hot-carrier effect under dynamic stress.” IEEE Elec. Dev. Lett., vol. EDL-7, pp. 337–339, 1986.CrossRefGoogle Scholar
  16. 16.
    W. Weber and I. Borchert. “Hot hole and electron effects in dynamically stressed n-MOSFETs.” Proc. of the 19th ESSDERC ‘89, Springer-Verlag, Berlin, pp. 719–722, 1989.Google Scholar
  17. 17.
    K. Mistry and B. Doyle, “The role of electron trap creation in enhanced hot-carrier degradation during AC stress.” IEEE Elec. Dev. Lett., vol. EDL-11, No. 6, pp. 267–269, 1990.CrossRefGoogle Scholar
  18. 18.
    W. Hänsch and W. Weber. “The effect of transients on hot carriers.” IEEE Elec. Dev. Lett., vol. 10, pp. 252–254, 1989.CrossRefGoogle Scholar
  19. 19.
    W. Weber. “Degradation behavior of dynamically stressed n-MOSFETs.” IEEE Trans. Elec. Dev., vol. ED-32, pp. 2543–2544, 1985.CrossRefGoogle Scholar
  20. 20.
    R. Bellens, P. Heremans, G. Groeseneken, H. E. Maes, and W. Weber. “The influence of the measurement setup on enhanced AC hot-carrier degradation of MOSFETs.” IEEE Trans. Elec. Dev., vol. ED-37, pp. 310–313, 1990.CrossRefGoogle Scholar
  21. 21.
    G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker. “A reliable approach to charge-pumping measurements in MOS transistors.” IEEE Trans. Elec. Dev., vol. ED-31, pp. 42–53, 1984.CrossRefGoogle Scholar
  22. 22.
    S. Selberherr. “MOS device modeling at 77K.” IEEE Trans. Elec. Dev., vol. 36, pp. 1464–1474, 1989.CrossRefGoogle Scholar
  23. 23.
    F. B. McLean, H. E. Boesch, and T. R. Oldham. “Electron-hole generation, transport and trapping in SiO2.” In Ionizing Radiation Effects in MOS Devices and Circuits. T. P. Ma and P. V. Dressendorfer (eds.), pp. 87–191. John Wiley, New York, 1989.Google Scholar
  24. 24.
    R. C. Hughes. “Charge-carrier transport phenomena in amorphous SiO2: Direct measurement of the drift mobility and lifetime.” Phys. Rev. Lett., vol. 30, pp. 1333–1336, 1973.CrossRefGoogle Scholar
  25. 25.
    R. C. Hughes. “Time-resolved hole transport in a-SiO2.” Phys. Rev. B, vol. 15, pp. 2012–2020, 1977.CrossRefGoogle Scholar
  26. 26.
    R. C. Hughes. “High field electronic properties of SiO2.” Sol. State Elec, vol. 21, pp. 251–258, 1978.CrossRefGoogle Scholar
  27. 27.
    M. Brox and W. Weber. “Annealing of fixed oxide charge induced by hot-carrier stressing.” Proc. ESSDERC’90, pp. 295–298, 1990.Google Scholar
  28. 28.
    E. Takeda and N. Suzuki. “An empirical model for device degradation due to hot-carrier injection.” IEEE Elec. Dev. Lett., vol. EDL-4, pp. 111–113, 1983.CrossRefGoogle Scholar
  29. 29.
    C. Hu, S. C. Tarn, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, and K. W. Terrill. “Hot-electron-induced MOSFET degradation—Model, monitor, and improvement.” IEEE Trans. Elec. Dev., vol. ED-32, pp. 375–385, 1985.Google Scholar
  30. 30.
    W. Weber, Q. Wang, M. Brox, and D. Schmitt-Landsiedel. “Hot-carrier degradation effects relevant in real operation of MOSFETs.” Proc. SSDM 1990, pp. 295–298, 1990.Google Scholar
  31. 31.
    W. Weber, L. Risch, W. Krautschneider, and Q. Wang. “Hot-carrier degradation of CMOS-inverters.” IEDM Tech. Dig., pp. 208–211, 1988.Google Scholar
  32. 32.
    J. Winnerl, A. Lill, D. Schmitt-Landsiedel, M. Orlowski, and F. Neppl. “Influence of transistor degradation on CMOS performance and impact on lifetime criterion.” IEDM Tech. Dig., pp. 204–207, 1988.Google Scholar
  33. 33.
    K. Mistry, and B. Doyle. “Hot-carrier degradation in n-MOSFETs used as pass transistors.” IEEE Trans. Elec. Dev., vol. ED-37, pp. 2415–2416, 1990.CrossRefGoogle Scholar
  34. 34.
    H.-M- Mühlhoff, P. Murkin, M. Orlowski, W. Weber, K. H. Küsters, W. Müller, C. M. Rogers, and H. Wendt. “Sub-micron p-MOSFETs under static and swap stress.” VLSI Symp., pp. 57–58, 1987.Google Scholar

Copyright information

© Van Nostrand Reinhold 1992

Authors and Affiliations

  • W. Weber
    • 1
  • M. Brox
    • 1
  • R. Bellens
    • 2
  • P. Heremans
    • 2
  • G. Groeseneken
    • 2
  • A. v. Schwerin
    • 2
  • H. E. Maes
    • 2
  1. 1.Corporate Research and DevelopmentSiemens AGMünchenGermany
  2. 2.IMEC vzwLeuvenBelgium

Personalised recommendations