Hot Carrier Design Considerations in MOS Nonvolatile Memories

  • Yoshiaki Kamigaki
  • Eiji Takeda


Floating-gate type nonvolatile semiconductor memories (NVSMs) were first introduced and applied by Kahng and Sze in 1967 [1]. The metal-nitride-oxide-silicon (MNOS) structure was first reported by Frohman-Bentchkowsky and Lenzlinger in 1969 [2]. Since then, three families of NVSMs [3–5] have been developed: EPROMs (Erasable and Programmable Read-Only Memories), EEPROMs (Electrically Erasable and Programmable Read-Only Memories), and flash memories (bulk electrically erasable).


Threshold Voltage Flash Memory Gate Oxide Nonvolatile Memory Drain Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Kahng and S. M. Sze. “A floating gate and its application to memory devices.” Bell Syst. Tech. J., pp.1288–1295, 1967.Google Scholar
  2. 2.
    D. Frohman-Bentchkowsky and M. Lenzlinger. “Charge transport and storage in metal-nitride-oxide-silicon (MNOS) structures.” J. Appl. Phys., vol. 40, pp. 3307–3319, 1969.CrossRefGoogle Scholar
  3. 3.
    D. Frohman-Bentchkowsky. “FAMOS—A new semiconductor charge storage device.” Solid-State Elec, 17, pp. 517–529, 1974.CrossRefGoogle Scholar
  4. 4.
    J. J. Chang. “Nonvolatile semiconductor memory devices.” Proc. IEEE, vol. 64, pp. 1039–1059, 1976.CrossRefGoogle Scholar
  5. 5.
    D. Frohman-Bentchkowsky. “Non-volatile semiconductor memories.” IEDM Tech. Dig., pp. 14–17, 1981.Google Scholar
  6. 6.
    S. Kohyama, T. Furuyama, S. Mimura, and H. Iizuka. “Non-thermal carrier generation in MOS structures.” Proc. 11th Conf. Solid-State Devices. In J. Jpn. Soc. Appl. Phys., vol. 19, Suppl. 85–92, 1980.Google Scholar
  7. 7.
    N. R. Mielke. “New EPROM data-loss mechanisms.” 21st Annual Proc. IEEE Rel. Physics Symp., pp. 106–113, 1983.Google Scholar
  8. 8.
    R. E. Sheiner, J. M. Caywood, and B. L. Euzent. “Data retention in EPROMs.” 18th Annual Proc. IEEE Rel. Physics Symp., pp. 238–243, 1980.Google Scholar
  9. 9.
    T. Hagiwara, E. Takeda, M. Horiuchi, R. Kondo, and Y. Itoh. “Analysis and experimentation on FIMOS (n-channel FAMOS) devices.” Proc. 8th Conf. Solid-State Devices, Tokyo, 1976, Japan. In J. Appl. Phys., vol. 16–1, Suppl. pp. 211–214, 1977.Google Scholar
  10. 10.
    G. A. Lee, R. A. Logan, R. A. Batdorf, J. J. Kleinmack, and W. Wiegmann. “Ionization rate of holes and electrons in silicon.” Phys. Rev., vol. 134, A761, 1964.CrossRefGoogle Scholar
  11. 11.
    Y. Tarui, Y. Hayashi, and K. Nagai. IEEE J. Solid-State Circ, vol. SC-7, 369, 1972.CrossRefGoogle Scholar
  12. 12.
    W. Schockley. “Problems related to pn junctions in silicon.” Solid State Elect., vol. 2, pp. 35–67, 1961.CrossRefGoogle Scholar
  13. 13.
    A. Phillips, Jr., R. R. O’Brien, and R. C. Joy. “IGFET hot-electron emission model.” IEDM Tech. Dig. Papers, pp. 39–42, 1975.Google Scholar
  14. 14.
    R. Kuhnert, C. Werner, and A. Schutz. “A novel impact-ionization model for l-μm-MOSFET simulation.” IEEE Trans. Elec. Dev., vol. ED-32, pp. 1057–1063, 1985.CrossRefGoogle Scholar
  15. 15.
    K. Katayama and T. Toyabe. “A new simulation method based on full 3D hydrodynamic equations.” IEDM Tech. Dig. Papers, pp. 135–138, 1989.Google Scholar
  16. 16.
    K. Blotecjaer. “Transport equations for electrons in two-valley semiconductors.” IEEE Trans. Elec. Dev., vol. ED-17, pp. 38–47, 1970.CrossRefGoogle Scholar
  17. 17.
    K. Yoshikawa et al. “0.6 μm EPROM cell design based on a new scaling scenario.” IEDM Tech. Dig. Papers, pp. 587–590, 1989.Google Scholar
  18. 18.
    P. K. Chatajee, W. R. Hunter, T. C. Holloway, and Y. T. Lin. “The impact of scaling laws on the choice of n-channel or p-channel for MOS VLSI.” IEEE Elec. Dev. Lett., vol. 1, pp. 220–223, 1980.CrossRefGoogle Scholar
  19. 19.
    K. Komori et al. “A high-performance memory cell technology for megabit EPROMs.” IEDM Tech. Dig. Papers, pp. 627–630, 1985.Google Scholar
  20. 20.
    E. Takeda, H. Kume, T. Toyabe, and S. Asai. “Submicrometer MOSFET structures for minimizing hot-carrier generation.” IEEE Trans. Elec. Dev., vol. ED-29, pp. 612–618, 1982.Google Scholar
  21. 21.
    S. Meguruo, S. Ikeda, K. Nagasawa, A. Koike, and T. Yasui. “Hi-CMOS III technology.” IEDM Tech. Dig. Papers, pp. 59–62, 1984.Google Scholar
  22. 22.
    C. Chang and J. Lien. “Corner-field induced drain leakage in thin oxide MOSFETs.” IEDM Tech. Dig. Papers, pp. 714–717, 1987.Google Scholar
  23. 23.
    T. Y. Chan, J. Chen, P. K. Ko, and C. Hu. “The impact of gate-induced drain leakage current on MOSFET scaling.” IEDM Tech. Dig. Papers, pp. 718–721, 1987.Google Scholar
  24. 24.
    H. Sasaki, M. Saitoh, and K. Hashimoto. “Hot-carrier induced drain leakage current in n-channel MOSFET.” IEDM Tech. Dig. Papers, pp. 726–729, 1987.Google Scholar
  25. 25.
    K. Yoshikawa, M. Sato, and Y. Ohshima. “A reliable Profiled Lightly-Doped Drain (PLD) cell for high-density submicron EPROMs and flash EEPROMs.” Extended Abstracts of 20th Conf. Solid-State Devices, Tokyo, 1988.Google Scholar
  26. 26.
    T. Uetsuki. “Study of the degradation of the data retention characteristics of floating-gate type nonvolatile memory.” Trans. IEICE Japan, vol. J74-C-II, pp. 218–226, April 1991.Google Scholar
  27. 27.
    E. O. Kane. “Theory of photoelectric emission from semiconductors.” Phys. Rev., vol. 127, p. 131, 1962.CrossRefGoogle Scholar
  28. 28.
    S. Mukherjee, T. Chang, R. Pang, M. Knecht, and D. Hu. “A single transistor EEPROM cell and its implementation in a 512k CMOS EEPROM.” IEDM Tech. Dig., pp. 616–619, 1985.Google Scholar
  29. 29.
    H. Kume et al. “A flash-erase EEPROM cell with an asymmetric source and drain structure.” IEDM Tech. Dig., pp. 560–563, 1987.Google Scholar
  30. 30.
    G. Verma and N. Mielke. “Reliability performance of ETOX-based flash memories.” 26th Annual Proc. Rel. Physics Symp., pp. 158–166, 1988.Google Scholar
  31. 31.
    S. Haddad, C. Chang, B. Swminathan, and J. Lien. “Degradation due to hole trapping in flash memory cells.” IEEE Elec. Dev. Lett., vol. 10, pp. 117–119, 1989.CrossRefGoogle Scholar
  32. 32.
    G. Samachisa et al. “A 128k flash EEPROM using double-polysilicon technology.” IEEE J. Solid-State Circ., vol. SC-22, pp. 676–683, Oct. 1987.CrossRefGoogle Scholar
  33. 33.
    F. Masuoka, M. Asano, S. Iwahashi, T. Komuro, and S. Tanaka. “A new flash EEPROM using triple polysilicon technology.” IEDM Tech. Dig., pp. 464–467, 1984.Google Scholar
  34. 34.
    M. Gill et al. “A 5-volt contactless array 256 kbit flash EEPROM technology.” IEDM Tech. Dig., pp. 428–431, 1988.Google Scholar
  35. 35.
    B. Euzent, N. Boruta, J. Lee, and C. Jenq. “Reliability aspects of a floating gate E2PROM.” 19th Annual Proc, Rel. Physics. Symp., pp. 11–16, 1981.Google Scholar
  36. 36.
    V. N. Kynett et al. “A 90-ns one-million erase/program cycle 1-Mbit flash memory.” IEEE Solid-State Circ, vol. 24, pp. 1259–1264, Oct. 1989.CrossRefGoogle Scholar
  37. 37.
    T. Hagiwara, Y. Yatsuda, R. Kondo, S. Minami, T. Aoto, and Y. Itoh. “A 16-kbit electrically erasable PROM using n-channel Si-gate MNOS technology.” IEEE J. Solid State Circ, vol. SC-15, no. 2, p. 345, 1980.Google Scholar
  38. 38.
    D. H. Oto, V. Κ. Dham, Κ. H. Gudger, M. J. Reitsma, G. S. Gongwer, Y. W. Hu, J. F. Olund, H. S. Jones, and S. T. K. Nieh. “High-voltage regulation and process considerations for high-density 5 V-only E2PROM’s.” IEEE J. Solid State Circ., vol. SC-18, no. 5, pp. 532–538, 1983.CrossRefGoogle Scholar
  39. 39.
    H. A. R. Wegener. “Endurance model for textured-poly floating gate memories.” IEDM Tech. Dig., pp. 480–483, 1984.Google Scholar
  40. 40.
    Y. Yatsuda, S. Nabetani, K. Uchida, S. Minami, M. Terasawa, T. Hagiwara, H. Katto, and T. Yasui. “Hi-MNOS II technology for a 64-kbit byte-erasable 5 V-only EEPROM.” IEEE J. Solid State Circ., vol. SC-20, no. 5, pp. 144–151, 1985.CrossRefGoogle Scholar
  41. 41.
    C. S. Bill, P. I. Suciu, M. S. Briner, and D. D. Rinerson. “A temperature-and process-tolerant 64-k EEPROM.” IEEE J. Solid State Circ., vol. SC-20, no. 5, pp. 979–985, 1985.CrossRefGoogle Scholar
  42. 42.
    L. Chen, S. W. Owen, C. S. Jenq, and A. R. Renninger. “A 256-k high-performance CMOS EEPROM technology.” IEDM Tech. Dig., pp. 620–623, 1985.Google Scholar
  43. 43.
    S. K. Lai, V. K. Dham, and D. Guterman. “Comparison and trends in dominant E2 technologies.” IEDM Tech. Dig., pp. 580–583, 1986.Google Scholar
  44. 44.
    D. Kahng and S. M. Sze. “A floating gate and its application to memory devices.” Bell Syst. Tech. J., vol. 46, p. 1283, 1967.Google Scholar
  45. 45.
    H. A. R. Wegener et al. “The variable-threshold transistor, a new electrically alterable nondestructive read-only storage device.” IEDM Tech. Dig., 1967.Google Scholar
  46. 46.
    W. S. Johnson et al. “A 16-kbit electrically erasable nonvolatile memory.” ISSCC Tech. Dig., pp. 152–153, 1980.Google Scholar
  47. 47.
    S. Jewel-Larsen et al. “A 5 volt RAM-like triple poly silicon EEPROM.” Proc. 2nd Annual Phoenix Conf., p. 508, 1983.Google Scholar
  48. 48.
    R. E. Sheiner, N. R. Mielke, and R. Haq. “Characterization and screening of SiO2 defects in EEPROM structures.” 21th Annual Proc., Rel. Physics Symp., pp. 248–256, 1983.Google Scholar
  49. 49.
    H. A. R. Wegener. “Endurance model for textured-poly floating gate memories.” IEDM Tech. Dig., pp. 480–483, 1984.Google Scholar
  50. 50.
    W. D. Brown. “MNOS technology—Will it survive?” Solid State Tech., p. 77, July, 1979.Google Scholar
  51. 51.
    M. Lenzlinger and E. H. Snow. “Fowler-Nordheim tunneling into thermally grown SiO2.” J. Appl. Phys., vol. 40, p. 278, 1969.CrossRefGoogle Scholar
  52. 52.
    A. Kolodny, S. T. K. Nieh, B. Eitan, and J. Shappir. “Analysis and modeling of floating-gate EEPROM cells.” IEEE Trans. Elec. Dev., vol. ED-33, pp. 835–844, 1986.CrossRefGoogle Scholar
  53. 53.
    Z. A. Weinberg. “On tunneling in metal-oxide-silicon structures.” J. Appl. Phys., vol. 53, pp. 5052–5056, 1982.CrossRefGoogle Scholar
  54. 54.
    Y. Nissan-Cohen, D. Frohman-Bentchkowsky, and J. Shappir. “Characterization of simultaneous bulk and interface high-field trapping effect in SiO2.” IEDM Tech. Dig., pp. 182–185, 1983.Google Scholar
  55. 55.
    M. Itsumi. “Positive and negative charging of thermally grown SiO2.” J. Appl. Phys., vol. 52, pp. 3491–3497, 1981.CrossRefGoogle Scholar
  56. 56.
    C. Kuo, J. R. Yeargain, W. J. Downey, K. A. Ilgenatein, J. R. Jorvig, S. L.Google Scholar
  57. Smith, and Α. R. Bormann. “An 80-ns 32-k EEPROM using FETMOS cell.” IEEE Solid-State Circ., vol. SC-17, pp. 821–827, 1982.Google Scholar
  58. 57.
    Κ. Naruke, S. Taguchi, and M. Wada. “Stress-induced leakage current limiting to scale down EEPROM tunnel oxide thickness.” IEDM Tech. Dig., pp. 424–427, 1988.Google Scholar
  59. 58.
    T. N. Nguyen, P. Olivo, and B. Ricco. “A new failure mode of very thin (<50 Å) thermal SiO2 films.” 25th Annual Proc., Rel. Physics Symp., p. 66, 1987.Google Scholar
  60. 59.
    D. A. Baglee and M. C. Smayling. “The effects of write/erase cycling on data loss in EEPROMs.” IEDM Tech. Dig., pp. 624–626, 1985.Google Scholar
  61. 60.
    Y. Kamigaki, S. Minami, and T. Shimotsu. “High-resolution transmission electron microscopy study of 1.5-nm ultrathin tunnel oxides of metal-nitride-oxide-silicon nonvolatile memory devices.” Appl. Phys. Lett., vol. 53, pp. 2629–2631, 1988.CrossRefGoogle Scholar
  62. 61.
    S. Minami, Y. Kamigaki, K. Uchida, K. Furusawa, and T. Hagiwara. “Improvement of written-state retentivity by scaling down MNOS memory devices.” Jpn. J. Appl. Phys., vol. 27, pp. L2168–L2170, 1988.CrossRefGoogle Scholar
  63. 62.
    Y. Kamigaki and Y. Itoh. “Thermal oxidation of silicon in various oxygen partial pressures diluted by nitrogen.” J. Appl. Phys., vol. 48, pp. 2891–2896, 1977.CrossRefGoogle Scholar
  64. 63.
    Y. Yatsuda, S. Minami, R. Kondo, T. Hagiwara, and Y. Itoh. “Effects of high-temperature hydrogen annealing on η-channel Si-gate MNOS devices.” Proc. 11th Conf. Solid State Devices, Tokyo, 1979. In Jpn. J. Appl. Phys., vol. 19, Suppl. 19–1, pp. 219–224, 1980.Google Scholar
  65. 64.
    A. M. Goodman, E. C. Ross, and M. T. Duffy. “Optimization of charge storage in the MNOS memory devices.” RCA Review, vol. 31, pp. 342–354, 1970.Google Scholar
  66. 65.
    Y. Yatsuda, T. Hagiwara, S. Minami, R. Kondo, and K. Uchida. “Scaling down MNOS nonvolatile memory devices.” Proc. 13th Conf. Solid State Devices, Tokyo, 1981. In Jpn. J. Appl. Phys., vol. 21, Suppl. 21–1, pp. 85–90, 1980.Google Scholar
  67. 66.
    E. C. Ross and J. T. Wallmark. “Theory of the switching behavior of MIS memory transistors.” RCA Review, vol. 30, pp. 366–381, 1969.Google Scholar
  68. 67.
    J. J. Chang. “Theory of MNOS memory transistor.” IEEE Trans. Elec. Dev., vol. ED-24, pp. 511–518, 1977.CrossRefGoogle Scholar
  69. 68.
    L. Lundkvist, I. Lundstrom, and C. Svensson. “Discharge of MNOS structures.” Solid State Elec., vol. 16, pp. 811–823, 1973.CrossRefGoogle Scholar
  70. 69.
    P. C. Arnett and Z. A. Weinberg. “A review of recent experiments pertaining to hole transport in Si3N4.” IEEE Trans. Elec. Dev., vol. ED-25, pp. 1014–1018, 1978.CrossRefGoogle Scholar
  71. 70.
    P. C. Arnett and B. H. Pollak. “Silicon nitride trap properties as revealed by charge-centroid measurements on MNOS devices.” Appl. Phys. Lett., vol. 26, pp. 94–96, 1975.CrossRefGoogle Scholar
  72. 71.
    Y. Kamigaki, S. Minami, and H. Kato. “Stored-charge distribution and 2-trap model in MNOS non-volatile memory devices.” In Oyo Buturi, vol. 59, pp. 797–807, 1990 (in Japanese), and “A new portrayal of electron and hole traps in amorphous silicon nitride.” J. Appl. Phys., vol. 68, pp. 2211–2215.Google Scholar
  73. 72.
    D. L. Griscom. “Characterization of tree E′-center variants in X- and γ-irradiated high purity a-SiO2.” Nucl. lustrum. Methods Phys. Res., vol. B1, pp. 481–488, 1984.CrossRefGoogle Scholar
  74. 73.
    E. Suzuki, Y. Hayashi, and H. Yanai. “Degradation properties in metal-nitride-oxide semiconductor structures.” J. Appl. Phys., vol. 52, pp. 6377–6385, 1981.CrossRefGoogle Scholar
  75. 74.
    A. G. Revesz. “Chemical and structural aspects of the irradiation behavior of SiO2 films on silicon.” IEEE Trans. Nuc Sci., vol. NS-24, pp. 2102–2107, 1977.CrossRefGoogle Scholar
  76. 75.
    E. Suzuki, H. Hiraishi, K. Ishii, and Y. Hayashi. “A low-voltage alterable EEPROM with metal-oxide-nitride-oxide-semiconductor (MONOS) structures.” IEEE Trans. Elec. Dev., vol. ED-30, pp. 122–128, 1983.CrossRefGoogle Scholar
  77. 76.
    C. C. Chao and M. White. “Characterization of charge injection and trapping in scaled SONOS/MONOS memory devices.” Solid State Elec., vol. 30, pp. 307–319, 1987.CrossRefGoogle Scholar
  78. 77.
    P. J. McWhorter, S. L. Miller, T. A. Dellin, and C. A. Axness. “Retention characteristics of SNOS nonvolatile devices in a radiation environment.” IEEE Trans. Nuc. Sci., vol. NS-34, pp. 1652–1657, 1987.CrossRefGoogle Scholar
  79. 78.
    P. J. McWhorter, S. L. Miller, and T. A. Dellin. “Radiation response of SNOS nonvolatile transistors.” IEEE Trans. Nuc. Sci., vol. NS-33, pp. 1414–1419, 1986.Google Scholar
  80. 79.
    Y. Kamigaki, S. Minami, T. Hagiwara, K. Furusawa, T. Furuno, M. Terasawa, and K. Yamazaki. “Yield and reliability of MNOS EEPROM products.” IEEE J. Solid State Circ., vol. 24, pp. 1714–1722, 1989.CrossRefGoogle Scholar
  81. 80.
    N. Mielke, A. Fazio, and H-C. Lion. “Reliability comparison of FLOTOX and textured-polysilicon E2 PROMs.” 25th Annual Proc. Rel. Physics Symp., pp. 85–92, 1987.Google Scholar
  82. 81a.
    S. Minami and Y. Kamigaki. “New scaling guidelines for MNOS nonvolatile memory device.” IEEE Trans. Elec. Dev., vol. ED-38, Nov. 1991;Google Scholar
  83. 81b.
    S. Minami and Y. Kamigaki. “Tunnel oxide thickness optimization for high-performance MNOS nonvolatile memory device.” IEICE Trans. Elec, vol. E74, no. 4, pp. 875–884, April 1991.Google Scholar

Copyright information

© Van Nostrand Reinhold 1992

Authors and Affiliations

  • Yoshiaki Kamigaki
    • 1
  • Eiji Takeda
    • 1
  1. 1.Central Research LaboratoryHitachi Ltd.TokyoJapan

Personalised recommendations