Advertisement

The Mechanisms of Hot-Carrier Degradation

  • P. Heremans
  • R. Bellens
  • G. Groeseneken
  • A. v. Schwerin
  • H. E. Maes
  • M. Brox
  • W. Weber

Abstract

During the last decade, hot-carrier degradation has evolved from an academic topic of research to a question of vital interest for the development of future VLSI MOSFET technologies. It is recognized today that hot-carrier degradation is, indeed, one of the foremost reliability problems in submicron MOSFET transistors.

Keywords

Gate Voltage Hole Injection Interface Trap Threshold Voltage Shift Gate Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Selberherr, A. Schütz, and H. W. Pözl. “MINIMOS—A two dimensional transistor analyzer.” IEEE Trans. Elec. Dev., vol. ED-27, p. 1540, 1980.CrossRefGoogle Scholar
  2. 2.
    C. R. Crowell and S. M. Sze. “Temperature dependence of avalanche multiplication in semiconductors.” Appl. Phys. Lett., vol. 9, p. 242, 1966.CrossRefGoogle Scholar
  3. 3.
    C. A. Lee, R. A. Logan, R. L. Batdorf, J. J. Kleinmack, and W. Wiegmann. “Ionization rates of holes and electrons in silicon.” Phys. Rev., vol. 134, A761, 1964.CrossRefGoogle Scholar
  4. 4.
    J. J. Tzou, C. C. Yao, R. Cheung, and H. W. K. Chan. “Hot-carrier-induced degradation in p-channel LDD MOSFET’s.” IEEE Elec. Dev. Lett., vol. EDL-7, p. 5, 1986.CrossRefGoogle Scholar
  5. 5.
    A. von Schwerin, W. Hänsch, and W. Weber. “The relationship between oxide charge and device degradation: A comparative study of n- and p- channel MOSFET’s.” IEEE Trans. Elec. Dev., vol. ED-34, p. 2493, 1987.CrossRefGoogle Scholar
  6. 6.
    K. R. Hofmann, C. Werner, W. Weber, and G. Dorda. “Hot-electron and hole-emission effects in short n-channel MOSFET’s.” IEEE Trans. Elec. Dev., vol. ED-32, p. 691, 1985.CrossRefGoogle Scholar
  7. 7.
    C. N. Berglund and R. S. Powell. “Photoinjection into SiO2: Electron scattering in the image-force potential well.” J. Appl. Phys., vol. 42, p. 573, 1971.CrossRefGoogle Scholar
  8. 8.
    Y. Nakagome, E. Takeda, H. Kume, and S. Asai. “New observation of hot-carrier injection phenomena.” Tech. Dig. Solid-State Device Conf., p. 63, 1982.Google Scholar
  9. 9.
    E. Takeda, Y. Nakagome, H. Kume, and S. Asai. “New hot-carrier injection and device degradation in submicron MOSFETs.” IEE Proc., vol. 130, p. 144, 1983.Google Scholar
  10. 10.
    E. Takeda, N. Suzuki, and T. Hagiwara. “Device performance degradation due to hot-carrier injection at energies below the Si-SiO2 energy barrier.” IEDM Tech. Dig., p. 396, 1983.Google Scholar
  11. 11.
    M. Miura-Mattausch, A. von Schwerin, W. Weber, C. Werner, and G. Dorda. “Gate currents in thin oxide MOSFETs.” IEE Proc., vol. 134, p. 111, 1987.Google Scholar
  12. 12.
    C. T. Wang. “An improved hot-electron-emission model for simulating the gate-current characteristic of MOSFETs.” Solid-State Elec, vol. 31, p. 229, 1988.CrossRefGoogle Scholar
  13. 13.
    Y.-Z. Chen and T.-W. Tang. “Numerical simulation of avalanche hot-carrier injection in short-channel MOSFETs.” IEEE Trans. Elec. Dev., vol. ED-35, p. 2180, 1988.CrossRefGoogle Scholar
  14. 14.
    J. Van Houdt, P. Heremans, J. S. Witters, G. Groeseneken, and H. E. Maes. “Study of the enhanced hot-electron injection in split-gate transistor structures.” Proc. European Solid State Device Research Conference (ESSDERC), p. 261, 1990.Google Scholar
  15. 15.
    J. E. Chung, M. C. Jeng, J. E. Moon, P. K. Ko, and C. Hu. “Low Voltage Hot-Electron Currents and Degradation in Deep-Submicrometer MOSFET’s.” IEEE Trans. Elec. Dev., vol. ED-37, p. 1651, 1990.CrossRefGoogle Scholar
  16. 16.
    B. Eitan and D. Frohman-Bentchkowsky. “Hot-electron injection into the oxide in n-channel MOS devices.” IEEE Trans. Elec. Dev., vol. ED-28, p. 328, 1981.CrossRefGoogle Scholar
  17. 17.
    Y. Nissan-Cohen. “A novel floating-gate method for measurement of ultralow hole and electron gate currents in MOS transistors.” IEEE Elec. Dev. Lett., vol. EDL-7, p. 561, 1986.CrossRefGoogle Scholar
  18. 18.
    F. H. Gaensslen and J. M. Aitken. “Sensitive technique for measuring small MOS gate currents.” IEEE Elec. Dev. Lett., vol. EDL-1, p. 231, 1980.CrossRefGoogle Scholar
  19. 19.
    J. Bauer and P. Balk. “The role of hot-hole injection and trapping in the long term degradation of n-channel MOSFETs with short channel lengths.” IEEE Semiconductor Interface Specialist Conf, San Diego, 1984.Google Scholar
  20. 20.
    N. S. Saks, P. L. Heremans, L. Van den hove, H. E. Maes, R. F. De Keersmaecker and G. J. Declerck. “Observation of hot-hole injection in nMOS transistors using a modified floating-gate technique.” IEEE Trans. Elec. Dev., vol. ED-33, p. 1529, 1986.CrossRefGoogle Scholar
  21. 21.
    P. Heremans. Hot Carrier Phenomena in MOSFET’s: Analysis Techniques, Injection Mechanisms and Degradation Models. Ph.D. Thesis, Katholieke Universiteit Leuven, May 1990.Google Scholar
  22. 22.
    J. J. Sanchez, K. K. Hsueh, and T. A. DeMassa. “Drain-engineered hot-electron-resistant device structures: A review.” IEEE Trans. Elec. Dev., vol. ED-36, p. 1125, 1989.CrossRefGoogle Scholar
  23. 23.
    F.-C. Hsu and H. R. Grinolds. “Structure-enhanced MOSFET degradation due to hot-electron injection.” IEEE Elec. Dev. Lett., vol. EDL-5, p. 71, 1984.CrossRefGoogle Scholar
  24. 24.
    H. Katto, K. Okuyama, S. Meguro, R. Nagai, and S. Ikeda. “Hot carrier degradation modes and optimization of LDD MOSFET’s.” IEDM Tech. Dig., p. 774, 1984.Google Scholar
  25. 25.
    M. Kakumu, M. Kinugawa, K. Hashimoto, and J. Matsunaga. “Power supply voltage for future CMOS VLSI in half and sub micrometer.” IEDM Tech. Dig., p. 399, 1986.Google Scholar
  26. 26.
    C. Hu. “Lucky-electron model for channel hot-electron emission.” IEDM Tech. Dig., p. 22, 1979.Google Scholar
  27. 27.
    W. Shockley. “Problems related to p-n junctions in silicon.” Solid-State Elec, vol. 2, p. 35, 1961.CrossRefGoogle Scholar
  28. 28.
    S. Tarn, P. Ko, and C. Hu. “Lucky-electron model of channel hot-electron injection in MOSFETs.” IEEE Trans. Elec. Dev., vol. ED-31, p. 1116, 1984.CrossRefGoogle Scholar
  29. 29.
    B. Eitan, D. Frohman-Bentchkowsky, and J. Shappir. “Impact ionization at very low voltages in silicon.” J. Appl. Phys., vol. 53, p. 1244, 1982.CrossRefGoogle Scholar
  30. 30.
    S. Tarn, F.-C. Hsu, C. Hu, R. S. Muller, and P. K. Ko. “Hot-electron currents in very short-channel MOSFET’s.” IEEE Elec. Dev. Lett., vol. EDL-4, p. 249, 1983.CrossRefGoogle Scholar
  31. 31.
    E. Takeda, H. Kume, T. Toyabe, and S. Asai. “Submicrometer MOSFET structure for minimizing hot-carrier generation.” IEEE Trans. Elec. Dev., vol. ED-29, p. 611, 1982.CrossRefGoogle Scholar
  32. 32.
    K. Hess and C. T. Sah. “Hot carriers in silicon surface inversion layers.” J. Appl. Phys., vol. 45, p. 1254, 1974.CrossRefGoogle Scholar
  33. 33.
    C. Hu, S. C. Tarn, F. C. Hsu, P. K. Ko, T. Y. Chan, and K. W. Terrill. “Hot-electron-induced MOSFET degradation—Model, monitor, and improvement.” IEEE Trans. Elec. Dev., vol. ED-32, p. 375, 1985.CrossRefGoogle Scholar
  34. 34.
    T. H. Ning, C. M. Osburn, and H. N. Yu. “Emission probability of hot electrons from silicon into silicon dioxide.” J. Appl. Phys., vol. 48, p. 286, 1977.CrossRefGoogle Scholar
  35. 35.
    F. C. Hsu and S. Tarn. “Relationship between MOSFET degradation and hot-electron-induced interface-state generation.” IEEE Elec. Dev. Lett., vol. EDL-5, p. 50, 1984.CrossRefGoogle Scholar
  36. 36.
    H. Haddara and S. Cristoloveanu. “Two-dimensional modeling of locally damaged short-channel MOSFET’s operating in the linear region.” IEEE Trans. Elec. Dev., vol. ED-34, p. 378, 1987.CrossRefGoogle Scholar
  37. 37.
    S. Tarn and C. Hu. “Hot electron-induced photon and photo-carrier generation in silicon MOSFETs.” IEEE Trans. Elec. Dev., vol. ED-31, p. 1264, 1984.CrossRefGoogle Scholar
  38. 38.
    T. Tsuchiya and J. Frey. “Relationship between hot-electrons/holes and degradation of p- and n-channel MOSFET’s.” IEEE Elec. Dev. Lett., vol. EDL-6, p. 8, 1985.CrossRefGoogle Scholar
  39. 39.
    G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker. “A reliable approach to charge-pumping measurements in MOS transistors.” IEEE Trans. Elec. Dev., vol. ED-31, p. 42, 1984.CrossRefGoogle Scholar
  40. 40.
    N. Saks and M. G. Ancona. “Determination of interface trap capture cross sections using three-level charge pumping.” IEEE Elec. Dev. Lett., vol. EDL-11, p. 339, 1990.CrossRefGoogle Scholar
  41. 41.
    G. Van den bosch, G. Groeseneken, P. Heremans, and H. E. Maes. “A new charge pumping procedure to measure interface trap energy distributions on MOSFET’s.” Proc. European Solid State Device Research Conference (ESSDERC), p. 579, 1990.Google Scholar
  42. 42.
    T. Poorter and P. Zoestberger. “Hot-carrier effects in MOS transistors.” IEDM Tech. Dig., p. 100, 1984.Google Scholar
  43. 43.
    A. B. M. Elliot. “The use of charge-pumping currents to measure surface state densities in MOS-transistors.” Solid-State Elec, vol. 19, p. 241, 1976.CrossRefGoogle Scholar
  44. 44.
    U. Cilingiroglu. “A general model for interface trap charge-pumping effects in MOS-devices.” Solid-State Elec, vol. 28, p. 1127, 1985.CrossRefGoogle Scholar
  45. 45.
    R. J. Van Overstraeten, G. Declerck, and G. L. Broux. “The influence of surface potential fluctuations on the operation of the MOS transistor in weak inversion.” IEEE Trans. Elec. Dev., vol. ED-20, p. 1154, 1973.CrossRefGoogle Scholar
  46. 46.
    E. H. Nicollian and J. R. Brews. MOS (Metal-Oxide Semiconductor) Physics and Technology. New York: Wiley, 1972.Google Scholar
  47. 47.
    P. Heremans, J. Witters, G. Groeseneken, and H. E. Maes. “Analysis of the charge-pumping technique and its application for the evaluation of MOSFET degradation.” IEEE Trans. Elec. Dev., vol. ED-36, p. 1318, 1989.CrossRefGoogle Scholar
  48. 48.
    P. Heremans, H. E. Maes, and N. Saks. “Evaluation of hot-carrier degradation of n-channel MOSFET’s with the charge-pumping technique.” Elec. Dev. Lett., vol. EDL-7, p. 428, 1986.CrossRefGoogle Scholar
  49. 49.
    P. Heremans, R. Bellens, G. Groeseneken and H. E. Maes. “Consistent model for the hot-carrier degradation on n-channel and p-channel MOS-FETs.” IEEE Trans. Elec. Dev., vol. ED-35, p. 2194, 1988.CrossRefGoogle Scholar
  50. 50.
    H. E. Maes and G. Groeseneken. “Determination of spatial surface state density distribution in MOS and SIMOS transistors after channel hot-electron injection.” Elec. Lett., vol. 18, p. 372, 1982.CrossRefGoogle Scholar
  51. 51.
    M. G. Ancona, N. S. Saks, and D. McCarthy. “Lateral distribution of hot-carrier-induced interface traps in MOSFET’s.” IEEE Trans. Elec. Dev., vol. ED-35, p. 2221, 1988.CrossRefGoogle Scholar
  52. 52.
    J.-J. Shaw and K. Wu. “Determination of spatial distribution of interface states on submicron, lightly doped drain transistors by charge pumping measurement.” IEDM Tech. Dig., p. 83, 1989.Google Scholar
  53. 53.
    J. F. Verwey. “Nonavalanche injection of hot carriers into SiO2.” J. Appl. Phys., vol. 44, p. 2681, 1973.CrossRefGoogle Scholar
  54. 54.
    T. H. Ning and H. N. Yu. “Optically induced injection of hot electrons into SiO2.” J. Appl. Phys., vol. 45, p. 5373, 1974.CrossRefGoogle Scholar
  55. 55.
    D. R. Young. “Electron current injected into SiO2 from p-type Si depletion regions.” J. Appl. Phys., vol. 47, p. 2089, 1976.Google Scholar
  56. 56.
    T. H. Ning. “Capture cross-section and trap concentration of holes in silicon dioxide.” J. Appl. Phys., vol. 47, p. 1079, 1976.CrossRefGoogle Scholar
  57. 57.
    A. V. Schwerin, M. M. Heyns, and W. Weber. “Investigation on the oxide field dependence of hole trapping and interface state generation in SiO2 layers using homogeneous nonavalanche injection of holes.” J. Appl. Phys., vol. 67, p. 7595, 1990.CrossRefGoogle Scholar
  58. 58.
    S. K. Lai. “Interface trap generation in silicon dioxide when electrons are captured by trapped holes.” J. Appl. Phys., vol. 54, p. 2540, 1983.CrossRefGoogle Scholar
  59. 59.
    M. M. Heyns, D. K. Rao, and R. F. De Keersmaecker. “Oxide field dependence of the Si-SiO2 interface state generation and charge trapping during electron injection.” AppL Surface Sci., vol. 39, p. 327, 1989.CrossRefGoogle Scholar
  60. 60.
    Y. Nissan-Cohen, J. Shappir, and D. Frohman-Bentchkowsky. “Trap generation and occupation dynamics in SiO2 under charge injection stress.” J. Appl. Phys., vol. 60, p. 2024, 1986.CrossRefGoogle Scholar
  61. 61.
    D. J. DiMaria. “Correlation of trap creation with electron heating in silicon dioxide.” Appl. Phys. Lett., vol. 51, p. 655, 1987.CrossRefGoogle Scholar
  62. 62.
    D. J. DiMaria and J. W. Stasiak. “Trap creation in silicon dioxide produced by hot electrons.” J. Appl. Phys., vol. 65, p. 2342, 1989.CrossRefGoogle Scholar
  63. 63.
    D. Krishna Rao, M. M. Heyns, and R. F. De Keersmaecker. “Interface state generation in NMOS transistors during hot-carrier stress at low temperature.” Proc. 18 th European Solid State Device Research Conference, ESSDERC 88, J.-P. Nougier and D. Gasquet, Eds. (Les Editions de Physique, France), p. 669, 1988.Google Scholar
  64. 64.
    J. M. Aitken and D. R. Young. “Electron trapping by radiation-induced charge in MOS-devices.” J. Appl. Phys., vol. 47, p. 1196, 1976.CrossRefGoogle Scholar
  65. 65.
    D. J. DiMaria, Z. A. Weinberg, and J. M. Aitken. “Location of positive charges in SiO2 films on Si generated by VUV photons, X-rays and high field stressing.” J. Appl. Phys., vol. 48, p. 898, 1977.CrossRefGoogle Scholar
  66. 66.
    S. J. Wang, J. M. Sung, and S. A. Lyon. “Relationship between hole trapping and interface state generation in metal-oxide-silicon structures.” Appl. Phys. Lett., vol. 52, p. 1431, 1988.CrossRefGoogle Scholar
  67. 67.
    F. B. McLean. “A framework for understanding radiation-induced interface states in SiO2 MOS-structures.” IEEE Trans. Nuc. Sci., vol. NS-27, p. 1651, 1980.CrossRefGoogle Scholar
  68. 68.
    R. Bellens, P. Heremans, G. Groeseneken, and H. E. Maes. “Hot-carrier effects in n-channel MOS transistors under alternating stress conditions.” IEEE Elec. Dev. Lett., vol. EDL-9, p. 232, 1988.CrossRefGoogle Scholar
  69. 69.
    S. C. Sun and J. D. Plummer. “Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces.” IEEE Trans. Elec. Dev., vol. ED-27, p. 1497, 1980.CrossRefGoogle Scholar
  70. 70.
    A. Hiroki, S. Odanaka, K. Ohe, and H. Ekasi. “A mobility model for submicrometer MOSFET simulations, including hot-carrier-induced device degradation.” IEEE Trans. Elec. Dev., vol. ED-35, p. 1487, 1988.CrossRefGoogle Scholar
  71. 71.
    J. Y. Choi, P. K. Ko, C. Hu, and W. F. Scott. “Hot-carrier induced degradation of metal-oxide-semiconductor field-effect transistors: Oxide charge versus interface traps.” J. Appl. Phys., vol. 65, p. 354, 1988.CrossRefGoogle Scholar
  72. 72.
    R. Bellens, P. Heremans, G. Groeseneken, and H. E. Maes. “A new procedure for lifetime prediction in n-channel MOS transistors using the charge-pumping technique.” Proc. IEEE Int. Reliability Physics Symp., p. 8, 1988.Google Scholar
  73. 73.
    H. Matsumoto, K. Sawada, S. Asai, M. Hirayama, and K. Nagasawa. “Effect of long-term stress on IGFET degradations due to hot-electron trapping.” IEEE Trans. Elec. Dev., vol. ED-28, p. 923, 1981.CrossRefGoogle Scholar
  74. 74.
    E. Takeda. “Hot-carrier effects in submicrometre MOS VLSIs.” IEE Proc, vol. 131, p. 153, 1984.Google Scholar
  75. 75.
    E. Takeda and N. Suzuki. “An empirical model for device degradation due to hot-carrier injection.” IEEE Elec. Dev. Lett., vol. EDL-4, p. 111, 1983.CrossRefGoogle Scholar
  76. 76.
    J. S. Witters, G. Groeseneken, and H. E. Maes. “Programming mode-dependent degradation of tunnel oxide floating-gate devices.” IEDM Tech. Dig., p. 544, 1987.Google Scholar
  77. 77.
    R. Bellens, P. Heremans, G. Groeseneken, and H. E. Maes. “Characterization and analysis of hot-carrier degradation in p-channel transistors under constant-current stress experiments.” Solid State Devices, p. 261, 1988.Google Scholar
  78. 78.
    E. Takeda, A. Shimizu, and T. Hagiwara. “Role of hot-hole injection in hot-carrier effects and the small degraded channel region in MOSFET’s.” IEEE Elec. Dev. Lett., vol. EDL-4, p. 329, 1983.CrossRefGoogle Scholar
  79. 79.
    S. K. Lai. “Two-carrier nature of interface state generation in hole trapping and radiation damage.” Appl. Phys. Lett., vol. 38, p. 58, 1981.CrossRefGoogle Scholar
  80. 80.
    P. Heremans, G. Groeseneken, and H. E. Maes. “Comparative study of the hot-carrier degradation phenomena in n-MOS and p-MOS short-channel transistors by means of the charge-pumping technique.” Proc. IEE Colloquium on ‘Hot-carrier degradation in short-channel MOS,’ p. 2/1, 1987.Google Scholar
  81. 81.
    P. Heremans, G. Groeseneken, and H. E. Maes. “Study of channel hot-carrier degradation in nMOS and pMOS transistors using the charge-pumping technique.” IEEE Semiconductor Interface Specialist Conf., San Diego, 1986Google Scholar
  82. 82.
    P. Heremans, G. Van den bosch, R. Bellens, G. Groeseneken, and H. E. Maes. “Temperature dependence of the channel hot-carrier degradation of n-channel MOSFETS.” IEEE Trans. Dev., vol. ED-37, p. 980, 1990.CrossRefGoogle Scholar
  83. 83.
    C. Bulucea. “Avalanche injection into the oxide in silicon gate-controlled devices.” Solid State Elec, vol. 18, p. 363, 1975.CrossRefGoogle Scholar
  84. 84.
    J. M. Aitken and D. R. Young. “Avalanche injection of holes into SiO2.” IEEE Trans. Nuc. Sci., vol. NS-24, p. 2128, 1977.CrossRefGoogle Scholar
  85. 85.
    D. J. DiMaria. “Defects and impurities in thermal SiO2.” Proc. Int. Topical Conf. (“The physics of SiO 2 and its interfaces”). Pantelides: New York, 1978Google Scholar
  86. 86.
    W. Hänsch, M. Orlowski, and W. Weber. “The hot-electron problem in submicron MOSFET.” J. de Physique, vol. 49, p. C4–597, 1988.Google Scholar
  87. 87.
    T. P. Ma and P. V. Dressendorfer (eds.). Ionizing Radiation Effects in MOS Devices and Circuits. J. Wiley, New York, 1989Google Scholar
  88. 88.
    I. Lundström and C. Svensson. “Tunnelling to traps in insulators.” J. Appl. Phys., vol. 43, p. 5045, 1972.CrossRefGoogle Scholar
  89. 89.
    S. Manzini and A. Modelli. “Tunnelling discharge of trapped holes in silicon dioxide.” In Insulating Films on Semiconductors. J. F. Verweij and D. R. Wolters, eds., North-Holland Pubis., New York, p. 112, 1983Google Scholar
  90. 90.
    H. Mikoshiba, T. Horiuchi, and K. Hamano. “Comparison of drain structures in n-channel MOSFETs.” IEEE Trans. Elec. Dev., vol. ED-33, p. 140, 1986.CrossRefGoogle Scholar
  91. 91.
    T. Y. Huang, W. W. Yao, R. A. Martin, A. G. Lewis, M. Koyanagi, and J. Y. Chen. “A novel submicron LDD transistor with inverse T-gate structure.” IEDM Tech. Dig., p. 742, 1986.Google Scholar
  92. 92.
    R. Izawa, T. Kure, and E. Takeda. “Impact of gate-drain overlapped device (GOLD) for deep submicron VLSI.” IEEE Trans. Elec. Dev., vol. ED-35, p. 2088, 1988.CrossRefGoogle Scholar
  93. 93.
    M. M. Heyns. Studie van de Ladingsvangsien Degradatie in Thermisch Gegroeide SiO 2 -Lagen. Ph.D. Dissertation, Leuven: 1986.Google Scholar
  94. 94.
    E. Takeda, Y. Nakagome, H. Kume, N. Suzuki, and S. Asai. “Comparison of characteristics of n-channel and p-channel MOSFET’s for VLSI.” IEEE Trans. Elec. Dev., vol. ED-30, p. 675, 1983.CrossRefGoogle Scholar
  95. 95.
    K. R. Hofmann. “Hot-carrier injection and charge trapping in n-channel and p-channel MOSFET’s.” Proc. Insulating Films on Semiconductors, p. 98, 1983.Google Scholar
  96. 96.
    Y. Hiruta, K. Maeguchi, and K. Kanzaki. “Impact of hot-electron trapping on half micron pMOSFETs with p+ poly Si gate.” IEDM Tech. Dig., p. 718, 1986.Google Scholar
  97. 97.
    Y. Nishioka, K. Ohyu, Y. Ohji, and T. P. Ma. “Channel length and width dependence of hot-carrier hardness in Fluorinated MOSFETs.” IEEE Elec. Dev. Lett., EDL-10, p. 540, 1989.CrossRefGoogle Scholar
  98. 98.
    K. K. Ng, C. Pai, W. M. Mansfield, and G. A. Clarke. “Suppression of hot-carrier degradation in Si MOSFETs by germanium doping.” IEEE Elec. Dev. Lett., EDL-11, p. 45, 1990.CrossRefGoogle Scholar
  99. 99.
    G. J. Dunn and S. A. Scott. “Channel hot-carrier stressing of reoxidized nitrided silicon dioxide.” IEEE Trans. Elec. Dev., ED-37, p. 1719, 1990.CrossRefGoogle Scholar
  100. 100.
    A. F. Tasch, H. Sin, and C.M. Maziar. “A new structural approach for reducing hot-carrier generation in deep submicron MOSFETs.” Proc. 1990 Symposium on VLSI Technology, p. 43, 1990.Google Scholar

Copyright information

© Van Nostrand Reinhold 1992

Authors and Affiliations

  • P. Heremans
    • 1
  • R. Bellens
    • 1
  • G. Groeseneken
    • 1
  • A. v. Schwerin
    • 1
  • H. E. Maes
    • 1
  • M. Brox
    • 2
  • W. Weber
    • 2
  1. 1.IMECBelgium
  2. 2.SiemensGermany

Personalised recommendations