Electron Spectroscopy

  • Maurice E. Schwartz
Part of the Modern Theoretical Chemistry book series (MTC, volume 4)


Electron spectroscopy has developed so rapidly during the last ten years or so that an adequate general survey would be far beyond the limits of this chapter. Fortunately there are already several survey books available,(1–3) a new journal devoted to the field has been born,(4) reports of three separate international conferences have been published,(5–7) and two review articles especially relevant to theory have recently appeared.(8–9) Even elementary textbooks(10) and pedagogically oriented journals(11,12) now contain serious discussions of this exciting new field for the beginning student. The reader can consult these various publications for details about earlier work which we cannot discuss here, as well as for many beautiful examples of experimental applications of photoelectron spectroscopy.


Electron Spectroscopy Photoelectron Spectrum Orbital Energy Hole State Vertical Ionization Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S.-E. Karlsson, I. Lindgren, and B. Lindgren, ESCA: Atomic, Molecular, and Solid State Structure Studied by Means of Electron Spectroscopy, Almqvist and Wiksells, Uppsala, Sweden (1967).Google Scholar
  2. 2.
    K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Hedén, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and Y. Baer, ESCA Applied to Free Molecules, North-Holland Publishing Co., Amsterdam (1969).Google Scholar
  3. 3.
    D. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, Molecular Photoelectron Spectroscopy, Wiley-Interscience, London (1970).Google Scholar
  4. 4.
    Journal of Electron Spectroscopy and Related Phenomena, Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
  5. 5.
    D. A. Shirley (ed.), Electron Spectroscopy: Proceedings of an International Conference held at Asilomar, Pacific Grove, California, 7–10 September, 1971, North-Holland Publishing Co., Amsterdam (1972).Google Scholar
  6. 6.
    J. N. Murreil (ed.), A general discussion on the photoelectron spectroscopy of molecules, 14–16 September, 1972, Faraday Discuss. Chem. Soc. No. 54 (1972).Google Scholar
  7. 7.
    Proceedings of the international conference on electron spectroscopy, Namur, April 16–19, 1974, J. Electron Spectrosc. Relat. Phenom. 5 (1974) (entire volume in one issue).Google Scholar
  8. 8.
    D. A. Shirley, ESCA, in: Advances in Chemical Physics (I. Prigogine and S. A. Rice, eds.), Vol. XXIII, pp. 85–159, Wiley, New York (1973).CrossRefGoogle Scholar
  9. 9.
    M. E. Schwartz, ESCA, in: MTP International Review of Science (Physical Chemistry Series 2: Theoretical Chemistry) (C. A. Coulson and A. D. Buckingham, eds.) pp. 189–216, Butter-worths, London (1975).Google Scholar
  10. 10.
    C. A. Coulson, The Shape and Structure of Molecules, Oxford Univ. Press, Oxford (1973).Google Scholar
  11. 11.
    H. Bock and P. D. Mollére, Photoelectron spectra: an experimental approach to teaching molecular orbital models, J. Chem. Educ. 51, 506–514 (1974).CrossRefGoogle Scholar
  12. 12.
    H. Bock and B. G. Ramsey, Photoelectron spectra of nonmetal compounds and their interpretation by MO models, Angew. Chem., Int. Ed. Engl. 12, 734–752 (1973).CrossRefGoogle Scholar
  13. 13.
    T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen eines Atoms, Physica 1, 104–113 (1934).CrossRefGoogle Scholar
  14. 14.
    W. G. Richards, The use of Koopmans’ theorem in the interpretation of photoelectron spectra, J. Mass Spectrom. Ion Phys. 2, 419–424 (1969).CrossRefGoogle Scholar
  15. 15.
    L. C. Snyder and H. Basch, Molecular Wavefunctions and Properties: Tabulated from SCF Calculations in a Gaussian Basis Set, Wiley-Interscience, New York (1972).Google Scholar
  16. 16.
    H. Basch, M. B. Robin, N. A. Kuebler, C. Baker, and D. W. Turner, Optical and photoelectron spectra of small rings. III. The saturated three-membered rings, J. Chem. Phys. 51, 52–66 (1969).CrossRefGoogle Scholar
  17. 17.
    C. R. Brundle, D. W. Turner, M. B. Robin, and H. Basch, Photoelectron spectroscopy of simple amides and carboxylic acids, Chem. Phys. Lett. 3, 292–296 (1969).CrossRefGoogle Scholar
  18. 18.
    C. R. Brundle, M. B. Robin, and H. Basch, Electronic energies and electronic structures of the fluoromethanes, J. Chem. Phys. 53, 2196–2213 (1970).CrossRefGoogle Scholar
  19. 19.
    M. B. Robin, N. A. Kuebler, and C. R. Brundle, Using the perfluoro effect and He(II) intensity effects for identifying photoelectron transitions, in: Electron Spectroscopy (D. A. Shirley, ed.), pp. 351–378, North-Holland Publishing Co., Amsterdam (1972).Google Scholar
  20. 20.
    S. Aung, R. M. Pitzer, and S. M. Chan, Approximate Hartree-Fock wavefunctions, one-electron properties, and electronic structure of the water molecule, J. Chem. Phys. 49, 2071–2080 (1968).CrossRefGoogle Scholar
  21. 21.
    W. Meyer, Ionization energies of water from PNO-CI calculations, Int. J. Quantum Chem. S5, 341–348 (1971).Google Scholar
  22. 22.
    L. S. Cederbaum, G. Hohlneicher, and W. von Niessen, On the breakdown of Koopmans’ theorem for nitrogen, Chem. Phys. Lett. 18, 503–508 (1973).CrossRefGoogle Scholar
  23. 23.
    L. S. Cederbaum, G. Hohlneicher, and W. von Niessen, Improved calculations of ionization energies of closed-shell molecules, Mol. Phys. 26, 1405–1424 (1973).CrossRefGoogle Scholar
  24. 24.
    M.-M. Rohmer and A. Veillard, Photoelectron spectrum of bis-(II-allyl) nickel, J. Chem. Soc. D 1973, 250–251.Google Scholar
  25. 25.
    W. Meyer, PNO-CI studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals and application to the ground state and ionized states of methane, J. Chem. Phys. 58, 1017–1035 (1973).CrossRefGoogle Scholar
  26. 26.
    M. F. Guest, I. H. Hillier, B. R. Higginson, and D. R. Lloyd, The electronic structure of transition metal complexes containing organic ligands. II. Low energy photoelectron spectra and ab initio SCF MO calculations of dibenzene chromium and benzene chromium tricarbonyl, Mol. Phys. 29, 113–128 (1975).CrossRefGoogle Scholar
  27. 27.
    M. E. Schwartz, Direct calculation of binding energies for inner-shell electrons in molecules, Chem. Phys. Lett. 5, 50–52 (1970).CrossRefGoogle Scholar
  28. 28.
    P. E. Cade, K. D. Sales, and A. C. Wahl, Electronic structure of diatomic molecules. III. A. Hartree-Fock wavefunctions and energy quantities for N2(X 1+ g) and N+ 2(X 2+ g, A 2IIu , B 2 + u ) molecular ions, J. Chem. Phys. 44, 1973–2003 (1966).CrossRefGoogle Scholar
  29. 29.
    G. Hohlneicher, F. Ecker, and L. Cederbaum, Direct calculation of ionization potentials by means of a perturbation method based on the use of Green’s functions, in:Electron Spectroscopy (D. A. Shirley, ed.), pp. 647–659, North-Holland Publishing Co., Amsterdam (1972).Google Scholar
  30. 30.
    L. S. Cederbaum, G. Hohlneicher, and S. Peyerimhoff, Calculation of vertical ionization potentials of formaldehyde by means of perturbation theory, Chem. Phys. Lett. 11, 421–424 (1971).CrossRefGoogle Scholar
  31. 31.
    L. S. Cederbaum, Direct calculation of ionization potentials of closed shell atoms and molecules, Theor. Chim. Acta 31, 239–260 (1973).CrossRefGoogle Scholar
  32. 32.
    B. Kellerer, L. S. Cederbaum, and G. Hohlneicher, Calculation of Koopmans’ defect using semiempirical molecular orbital methods, J. Electron Spectrosc. Relat. Phenom. 3, 107–122 (1974).CrossRefGoogle Scholar
  33. 33.
    D. P. Chong, F. G. Herring, and D. McWilliams, Perturbation corrections to Koopmans’ theorem. I. Double-zeta slater-type-orbital basis, J. Chem. Phys. 61, 78–84 (1974).CrossRefGoogle Scholar
  34. 34.
    D. P. Chong, F. G. Herring, and D. McWilliams, Perturbation corrections to Koopmans’ theorem. II. A study of basis set variation, J. Chem. Phys. 61, 958–962 (1974).CrossRefGoogle Scholar
  35. 35.
    D. P. Chong, F. G. Herring, and D. McWilliams, Perturbation corrections to Koopmans’ theorem. III. Extension to molecules containing Si, P, S, and CI and comparison with other methods, J. Chem. Phys. 61, 3567–3570 (1974).CrossRefGoogle Scholar
  36. 36.
    M. E. Schwartz, J. D. Switalski, and R. E. Stronski, Core-level binding energy shifts from molecular orbital theory, in: Electron Spectroscopy (D. A. Shirley, ed.), pp. 605–627, North-Holland Publishing Co., Amsterdam (1972).Google Scholar
  37. 37.
    H. Basch, Theoretical models for the interpretation of ESCA spectra, J. Electron Spectrosc. Relat. Phenom. 5, 463–500 (1974).CrossRefGoogle Scholar
  38. 38.
    U. Gelius, B. Roos, and P. Siegbahn, Ab initio MO SCF calculations of ESCA shifts in sulphur-containing molecules, Chem. Phys. Lett. 8, 471–475 (1970).CrossRefGoogle Scholar
  39. 39.
    H. Basch and L. C. Snyder, ESCA: chemical shifts of K-shell electron binding energies for first row atoms in molecules, Chem. Phys. Lett. 3, 333–336 (1969).CrossRefGoogle Scholar
  40. 40.
    U. Gelius, P. F. Hedén, J. Hedman, B. J. Lindberg, R. Manne, R. Nordberg, C. Nordling, and K. Siegbahn, Molecular spectroscopy by means of ESCA. III. Carbon compounds, Phys. Scr. 2, 70–80 (1970).CrossRefGoogle Scholar
  41. 41.
    H. Basch, On the interpretation of K-shell electron binding energy shifts in molecules, Chem. Phys. Lett. 5, 337–339 (1970).CrossRefGoogle Scholar
  42. 42.
    M. E. Schwartz, Correlation of 1s binding energy with the average quantum mechanical potential at a nucleus, Chem. Phys. Lett. 6, 631–635 (1970).CrossRefGoogle Scholar
  43. 43.
    B. J. Lindberg, Can we expect any meaningful correlations between NMR and ESCA shifts? J. Electron Spectrosc. Relat. Phenom. 5, 149–166 (1974).CrossRefGoogle Scholar
  44. 44.
    M. E. Schwartz, Core level binding energy shifts and the average quantum mechanical potential at a nucleus from CNDO theory, J. Am. Chem. Soc. 94, 6899–6901 (1972).CrossRefGoogle Scholar
  45. 45.
    D. W. Davis and D. A. Shirley, The prediction of core-level binding energy shifts from CNDO molecular orbitals, J. Electron Spectrosc. Relat. Phenom. 3, 137–163 (1974).CrossRefGoogle Scholar
  46. 46.
    D. A. Shirley, ESCA results vs. other physical and chemical data, J. Electron Spectrosc. Relat. Phenom. 5, 135–148 (1974).CrossRefGoogle Scholar
  47. 47.
    D. A. Shirley, Near-equivalence of the quantum mechanical potential model and the ther-mochemical model of ESCA shifts, Chem. Phys. Lett. 15, 325–330 (1972).CrossRefGoogle Scholar
  48. 48.
    P. S. Bagus, Self-consistent-field wave functions for hole states of some Ne-like and Ar-like ions, Phys. Rev. 139, A619–A634 (1965).CrossRefGoogle Scholar
  49. 49.
    F. A. Gianturco and C. Guidotti, Some notes on K-electron energies in molecular systems, Chem. Phys. Lett. 9, 539–543 (1971).CrossRefGoogle Scholar
  50. 50.
    E. Clementi and A. Routh, Study of the electronic structure of molecules. XV. Comments on the molecular orbital valency state and on the molecular orbital energies, Int. J. Quantum Chem. VI, 525–539 (1972).CrossRefGoogle Scholar
  51. 51.
    I. H. Hillier, V. R. Saunders, and M. H. Wood, On the contribution of orbital relaxation to ESCA chemical shifts, Chem. Phys. Lett. 7, 323–324 (1970).CrossRefGoogle Scholar
  52. 52.
    L. J. Aarons, M. F. Guest, M. B. Hall, and I. H. Hillier, Use of Koopmans’ theorem to interpret core electron ionization potentials, J. Chem. Soc, Faraday Trans. 2 69, 563–568 (1973).CrossRefGoogle Scholar
  53. 53.
    J. Cambray, J. Gasteiger, A. Streitwieser, Jr., and P. S. Bagus, Selfconsistent field calculation of hole states of carbon monoxide. Electron density functions by computer graphics, J. Am. Chem. Soc. 96, 5978–5984 (1974).CrossRefGoogle Scholar
  54. 54.
    L. Hedin and A. Johansson, Polarization corrections to core levels, J. Phys. B. 2, 1336–1346 (1969).CrossRefGoogle Scholar
  55. 55.
    D. W. Davis and D. A. Shirley, A relaxation correction to core-level binding energy shifts in small molecules, Chem. Phys. Lett. 15, 185–190 (1972).CrossRefGoogle Scholar
  56. 56.
    D. W. Davis, M. S. Banna, and D. A. Shirley, Core-level binding-energy shifts in small molecules, J. Chem. Phys. 60, 237–245 (1974).CrossRefGoogle Scholar
  57. 57.
    M. E. Scnwartz and S. R. Rothenberg, Concerning the calculation of relaxation energies from relaxation potential equivalent core models, to be published (1977).Google Scholar
  58. 58.
    O. Goscinski, B. T. Pickup, and G. Purvis, Direct calculation of ionization energies. Transition operator for the ΔE Scf method, Chem. Phys. Lett. 22, 167–171 (1973).CrossRefGoogle Scholar
  59. 59.
    G. Howat and O. Goscinski, Relaxation effects on ESCA chemical shifts by a transition potential model, Chem. Phys. Lett. 30, 87–90 (1975).CrossRefGoogle Scholar
  60. 60.
    C. C. J. Roothaan and A. W. Weiss, Correlated orbitals for the ground state of heliumlike systems, Rev. Mod. Phys. 32, 194–205 (1960).CrossRefGoogle Scholar
  61. 61.
    S. Corvilain and G. Verhaegen, Kshell binding energies in C and O, Int. J. Quantum Chem. S7, 69–81 (1973).Google Scholar
  62. 62.
    R. L. Chase, H. P. Kelley, and H. J. Köhler, Correlation energies and auger rates in atoms with inner-shell vacancies, Phys. Rev. A 3, 1550–1557 (1971).CrossRefGoogle Scholar
  63. 63.
    C. M. Moser, R. K. Nesbet, and G. Verhaegen, A correlation energy calculation of the 1s hole state in neon, Chem. Phys. Lett. 12, 230–232 (1971).CrossRefGoogle Scholar
  64. 64.
    U. Gelius, S. Svensson, H. Siegbahn, E. Basilier, Å. Faxälv, and K. Siegbahn, Vibrational and lifetime line broadenings in ESCA, Chem. Phys. Lett. 28, 1–7 (1974).CrossRefGoogle Scholar
  65. 65.
    P. S. Bagus and H. F. Schaefer III, Directnear-Hartree-Fock calculations on the 1s hole states of NO+, J. Chem. Phys. 55, 1474–1475 (1971).CrossRefGoogle Scholar
  66. 66.
    P. S. Bagus and H. F. Schaefer III, Localized and delocalized 1s hole states of the O+ 2 molecular ion, J. Chem. Phys. 56, 224–226 (1972).CrossRefGoogle Scholar
  67. 67.
    L. J. Aarons, M. Barber, M. F. Guest, I. H. Hillier, and J. H. McCartney, Satellite peaks in the high energy photoelectron spectra of some small first row molecules. An experimental and theoretical study. Mol. Phys. 26, 1247–1256 (1973).CrossRefGoogle Scholar
  68. 68.
    U. Gelius, E. Basilier, S. Svensson, T. Bergmark, and K. Siegbahn, A high resolution ESCA instrument with x-ray monochromator for gases and solids, J. Electron Spectrosc. Relat. Phenom. 2, 405–434 (1974).Google Scholar
  69. 69.
    R. L. Martin and D. A. Shirley, Theory of core-level photoemission spectra, J. Chem. Phys. 64, 3685–3689 (1976).CrossRefGoogle Scholar
  70. 70.
    R. L. Martin, B. E. Mills, and D. A. Shirley, Fluorine 1s correlation states in the photoioniza-tion of hydrogen fluoride: experiment and theory, J. Chem. Phys., 64, 3690–3698 (1976).CrossRefGoogle Scholar
  71. 71.
    D. W. Smith and O. W. Day, Extension of Koopmans’ theorem. I. Derivation, J. Chem. Phys. 62, 113–114 (1975).CrossRefGoogle Scholar
  72. 72.
    O. W. Day, D. W. Smith, and R. C. Morrison, Extension of Koopmans’ theorem. II. Accurate ionization energies from correlated wavefunctions for closed-shell atoms, J. Chem. Phys. 62, 115–119 (1975).CrossRefGoogle Scholar
  73. 73.
    M. M. Morrell, R. G. Parr, and M. Levy, Calculation of ionization potentials from density matrices and natural functions, and the long-range behavior of natural orbitals and electron density, J. Chem. Phys. 62, 549–554 (1975).CrossRefGoogle Scholar
  74. 74.
    W. von Niessen, L. S. Cederbaum, and G. H. F. Dierckson, The electronic structure of molecules by a many-body approach. IV. Ionization potentials and one-electron properties of pyrrole and phosphole, J. Am. Chem. Soc. 98, 2066–2073 (1976).CrossRefGoogle Scholar
  75. 75.
    D. P. Chong, F. G. Herring, and D. McWilliams, Calculation of vibrational structure in molecular photoelectron spectra, J. Electron Spectrosc. Relat. Phenom. 7, 429–443 (1975).CrossRefGoogle Scholar
  76. 76.
    D. P. Chong, F. G. Herring, and D. McWilliams, Theoretical study of vertical ionization potentials of HNO, FNO, O3, CF2, and N2H2, J. Electron Spectrosc. Relat. Phenom. 7, 445–455 (1975).CrossRefGoogle Scholar
  77. 77.
    G. B. Baksay and N. S. Hush, Theoretical study of the N+ 2 molecular ion, Chem. Phys. 16, 219–227 (1976).CrossRefGoogle Scholar
  78. 78.
    D. W. Smith, personal communication.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Maurice E. Schwartz
    • 1
  1. 1.Department of Chemistry and Radiation LaboratoryUniversity of Notre DameNotre DameUSA

Personalised recommendations