Advertisement

Molecular Anions

  • Leo Radom
Part of the Modern Theoretical Chemistry book series (MTC, volume 4)

Abstract

Anions present a tempting target for theoretical study because their examination by experimental means is not straightforward. The experimental difficulties arise because isolated anions are extremely fragile. Electron affinities are normally less than a few electron volts and, hence, the extra electron is only loosely bound. It is therefore difficult to study many anionic species by conventional procedures. However, recently developed techniques such as matrix isolation(1) (for structural information) and ion cyclotron resonance(2) (for energetic information) provide promising new sources of experimental data.

Keywords

Electron Affinity Proton Affinity Neutral Molecule Correlation Energy Molecular Orbital Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. E. Milligan and M. E. Jacox, in: Molecular Spectroscopy: Modern Research (K. N. Rao and C. W. Mathews, eds.), pp. 259–286, Academic Press, New York (1972).Google Scholar
  2. 2.
    J. L. Beauchamp, Ion cyclotron resonance spectroscopy, Ann. Rev. Phys. Chem. 22, 527–561 (1971).CrossRefGoogle Scholar
  3. 3.
    E. Clementi and A. D. McLean, Atomic negative ions, Phys. Rev. 133, A419–A423 (1964).CrossRefGoogle Scholar
  4. 4.
    E. Clementi, A. D. McLean, D. L. Raimondi, and M. Yoshimine, Atomic negative ions. Second period, Phys. Rev. 133, A1274–A1279 (1964).CrossRefGoogle Scholar
  5. 5(a).
    P. E. Cade, Hartree-Fock wavefunctions, potential curves, and molecular properties for OH” (1+) and SH- (1+), J. Chem. Phys. 47, 2390–2406 (1967);CrossRefGoogle Scholar
  6. 5(b).
    P. E. Cade, The electron affinities of the diatomic hydrides CH, NH, SiH and PH, Proc. Phys. Soc., London 91, 842–854 (1967).CrossRefGoogle Scholar
  7. 6.
    F. Driessler, R. Ahlrichs, V. Staemmler, and W. Kutzelnigg, Ab initio calculations on small hydrides including electron correlation. XI. Equilibrium geometries and other properties of CH3, CH+ 3, and CH- 3, and inversion barrier of CH- 3, Theor. Chim. Acta 30, 315–326 (1973).CrossRefGoogle Scholar
  8. 7.
    (a) J. Simons and W. D. Smith, Theory of electron affinities of small molecules, J. Chem. Phys. 58, 4899–4907 (1973);CrossRefGoogle Scholar
  9. 7a.
    (b) J. Kenney and J. Simons, Theoretical studies of molecular ions: BeH-, J. Chem. Phys. 62, 592–599 (1975).CrossRefGoogle Scholar
  10. 8.
    L. C. Snyder, Heats of reaction from Hartree-Fock energies of closed-shell molecules, J. Chem. Phys. 46, 3602–3606 (1967).CrossRefGoogle Scholar
  11. 9.
    L. C. Snyder and H. Basch, Heats of reaction from self-consistent field energies of closed-shell molecules, J. Am. Chem. Soc. 91, 2189–2198 (1969).CrossRefGoogle Scholar
  12. 10.
    W. J. Hehre, R. Ditchfield, L. Radom, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation, J. Am. Chem. Soc. 92, 4796–4801 (1970).CrossRefGoogle Scholar
  13. 11.
    W. J. Hehre, L. Radom, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. VII. A systematic study of energies, conformations, and bond interactions, J. Am. Chem. Soc. 93, 289–300 (1971).CrossRefGoogle Scholar
  14. 12.
    L. Radom, W. J. Hehre, and J. A. Pople, Conformations and heats of formation of organic molecules by use of a minimal Slater type basis, J. Chem. Soc. A 1971, 2299–2303.Google Scholar
  15. 13.
    M. Cohen and A. Dalgarno, Stationary properties of the Hartree-Fock approximation, Proc. Phys. Soc., London 77, 748–750 (1961).CrossRefGoogle Scholar
  16. 14.
    K. F. Freed, Geometry and barriers to internal rotation in Hartree-Fock theory, Chem. Phys. Lett. 2, 255–256 (1968).CrossRefGoogle Scholar
  17. 15.
    L. Radom and J. A. Pople, in: M. T.P. International Review of Science (Theoretical Chemistry) (W. Byers Brown, ed.) pp. 71–112, Butterworths, London (1972).Google Scholar
  18. 16.
    H. F. Schaefer, in: Critical Evaluation of Chemical and Physical Structural Information (D. R. Lide, ed.) pp. 591–602, National Academy of Science, Washington (1974).Google Scholar
  19. 17.
    J. W. Moskowitz and M. C. Harrison, Gaussian wavefunctions for the 10-electron systems. III. OH-, H2O, H3O+, J. Chem. Phys. 43, 3550–3555 (1965).CrossRefGoogle Scholar
  20. 18.
    C. D. Ritchie and H. F. King, Gaussian basis SCF calculations for OH-, H2O, NH3, and CH4, J. Chem. Phys. 47, 564–570 (1967).CrossRefGoogle Scholar
  21. 19.
    A. C. Hopkinson, N. K. Holbrook, K. Yates, and I. G. Csizmadia, Theoretical study on the proton affinity of small molecules using Gaussian basis sets in the LCAO-MO-SCF framework, J. Chem. Phys. 49, 3596–3601 (1968).CrossRefGoogle Scholar
  22. 20.
    A. A. Frost, A floating spherical Gaussian orbital model of molecular structure. III. First-row atom hydrides, J. Phys. Chem. 72, 1289–1293 (1968).CrossRefGoogle Scholar
  23. 21.
    W. J. Hehre and J. A. Pople, The methyl inductive effect on acid-base strengths, Tetrahedron Lett. 1970, 2959–2962.Google Scholar
  24. 22.
    P. H. Owens, R. A. Wolf, and A. Streitwieser, Ab initio calculations of the acidities of some alcohols and hydrocarbons, Tetrahedron Lett. 1970, 3385–3388.Google Scholar
  25. 23.
    M. D. Newton and S. Ehrenson, Ab initio studies on the structures and energetics of inner- and outer-shell hydrates of the proton and the hydroxide ion, J. Am. Chem. Soc. 93, 4971–4990 (1971).CrossRefGoogle Scholar
  26. 24.
    W. P. Kraemer and G. H. F. Dierckson, SCF MO LCGO studies on hydrogen bonding: the system (HOHOH)”, Theor. Chim. Acta 23, 398–403 (1972).CrossRefGoogle Scholar
  27. 25.
    H. Lischka, Ab initio calculations on small hydrides including electron correlation. IX. Equilibrium geometries and harmonic force constants of HF, OH-, H2F+ and H2O and proton affinities of F-, OH-, HF and H2O, Theor. Chim. Acta 31, 39–48 (1973).CrossRefGoogle Scholar
  28. 26.
    L. Radom, Structures of simple anions from ab initio molecular orbital calculations, Aust. J. Chem., 29, 1635–1640 (1976).CrossRefGoogle Scholar
  29. 27.
    W. J. Hehre, R. F. Stewart, and J. A. Pople, Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals, J. Chem. Phys. 51, 2657–2664 (1969).CrossRefGoogle Scholar
  30. 28.
    R. A. Hegstrom, W. E. Palke, and W. N. Lipscomb, Optimized minimum basis set for BH- 4, J. Chem. Phys. 46, 920–922 (1967).CrossRefGoogle Scholar
  31. 29.
    P. H. Owens and A. Streitwieser, Ab initio quantum organic chemistry. I. STO-NG calculations of methane and methyl anion, Tetrahedron 27, 4471–4493 (1971).CrossRefGoogle Scholar
  32. 30.
    R. Ditchfield, W. J. Hehre, and J. A. Pople, Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules, J. Chem. Phys. 54, 724–728 (1971).CrossRefGoogle Scholar
  33. 31.
    (a)W. Kutzelnigg, Solution of the two-electron problem in quantum mechanics by direct determination of the natural orbitals. I. Theory, Theor. Chim. Acta 1, 327–342 (1963);CrossRefGoogle Scholar
  34. 31.
    (b) M. Jungen and R. Ahlrichs, Ab initio calculations on small hydrides including electron correlation. III. A study of the valence shell intrapair and interpair correlation energy of some first row hydrides, Theor. Chim. Acta 17, 339–347 (1970).CrossRefGoogle Scholar
  35. 32.
    P. C. Hariharan and J. A. Pople, Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory, Mol. Phys. 27, 209–214 (1974).CrossRefGoogle Scholar
  36. 33.
    E. L. Albasiny and J. R. A. Cooper, The calculation of electronic properties of BH- 4, CH4 and NH+ 4 using one-centre self-consistent field wave functions, Proc. Phys. Soc., London 82, 289–303 (1963).CrossRefGoogle Scholar
  37. 34.
    D. M. Bishop, A one-centre treatment of the ammonium and borohydride ions, Theor. Chim. Acta 1, 410–417 (1963).CrossRefGoogle Scholar
  38. 35.
    M. Krauss, Calculation of the geometrical structure of some AHn molecules, J. Res. Natl. Bur. Stand., Sect. A 68, 635–644 (1964).Google Scholar
  39. 36.
    P. Pulay, Ab initio calculation of force constants and equilibrium geometries. III. Second-row hydrides, Mol. Phys. 21, 329–339 (1971).CrossRefGoogle Scholar
  40. 37.
    J. R. Easterfield and J. W. Linnett, Applications of a simple molecular wavefunction. Part 4. The force fields of BH- 4, CH4 and NH+ 4, J. Chem. Soc., Faraday Trans. 2 1974, 317–326.Google Scholar
  41. 38.
    P. A. Kollman and L. C. Allen, A theory of the strong hydrogen bond. Ab initio calculations on HF- 2 and H5O+ 2, J. Am. Chem. Soc. 92, 6101–6107 (1970).CrossRefGoogle Scholar
  42. 39.
    P. N. Noble and R. N. Kortzeborn, LCAO-MO-SCF studies of HF- 2 and the related unstable systems HF0 2 and HeF2, J. Chem. Phys. 52, 5375–5387 (1970).CrossRefGoogle Scholar
  43. 40.
    J. Almlöf, Hydrogen bond studies. 71. Ab initio calculation of the vibrational structure and equilibrium geometry in HF- 2 and DF- 2, Chem. Phys. Lett. 17, 49–52 (1972).CrossRefGoogle Scholar
  44. 41.
    T. W. Archibald and J. R. Sabin, Theoretical investigation of the electronic structure and properties of N- 3, N3 and N+ 3, J. Chem. Phys. 55, 1821–1829 (1971).CrossRefGoogle Scholar
  45. 42.
    P. K. Pearson, H. F. Schaefer, J. H. Richardson, L. M. Stephenson, and J. I. Brauman, Three isomers of the NO- 2 ion, J. Am. Chem. Soc. 96, 6778–6779 (1974).CrossRefGoogle Scholar
  46. 43.
    M. D. Newton, W. A. Lathan, W. J. Hehre, and J. A. Pople, Selfconsistent molecular orbital methods. V. Ab initio calculation of equilibrium geometries and quadratic force constants, J. Chem. Phys. 52, 4064–4072 (1970).CrossRefGoogle Scholar
  47. 44.
    W. A. Lathan, W. J. Hehre, L. A. Curtiss, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. X. A systematic study of geometries and energies of AHn molecules and cations, J. Am. Chem. Soc. 93, 6377–6387 (1971).CrossRefGoogle Scholar
  48. 45.
    L. Radom, Ab initio molecular orbital calculations on acetyl cations. Relative hyperconjuga-tive abilities of C-X bonds, Aust. J. Chem. 27, 231–239 (1974).CrossRefGoogle Scholar
  49. 46.
    L. Radom, P. C. Hariharan, J. A. Pople, and P.V.R. Schleyer, Molecular orbital theory of the electronic structure of organic compounds. XXII. Structures and stabilities of C3H+ 3 and C3H+ cations, J. Am. Chem. Soc. 98, 10–14 (1976).CrossRefGoogle Scholar
  50. 47.
    P. G. Lykos, R. B. Hermann, J. D. S. Ritter, and R. Moccia, Ab initio calculations on simple 7r-electron systems, Bull. Am. Phys. Soc. 9, 145 (1964).Google Scholar
  51. 48.
    R. N. Rutledge and A. F. Saturno, One-center expansion wavefunctions for CH- 3, CH4 and CH+ 5 , J. Chem. Phys. 43, 597–602 (1965).CrossRefGoogle Scholar
  52. 49.
    B. D. Joshi, Study of CH- 3 and OH+ 3 by one-center expansion self-consistent-field method, J. Chem. Phys. 47, 2793–2798 (1967).CrossRefGoogle Scholar
  53. 50.
    W. J. Hehre, R. F. Stewart, and J. A. Pople, Atomic electron populations by molecular orbital theory, Symp. Faraday Soc. 2, 15–22 (1968).CrossRefGoogle Scholar
  54. 51.
    P. Millie and G. Berthier, All-electron calculations of open-shell polyatomic molecules. I. SCF wave function in Gaussians for methyl and vinyl radicals, Int. J. Quantum Chem., Symp. 2, 67–73 (1968).CrossRefGoogle Scholar
  55. 52.
    C. D. Ritchie and H. F. King, Theoretical studies of proton-transfer reactions. III. The reactions of hydride ion with ammonia and methane, J. Am. Chem. Soc. 90, 838–843 (1968).CrossRefGoogle Scholar
  56. 53.
    R. E. Kari and I. G. Csizmadia, Near-molecular Hartree-Fock wavefunction for CH- 3, J. Chem. Phys. 46, 4585–4590 (1967).CrossRefGoogle Scholar
  57. 54.
    R. E. Kari and I. G. Csizmadia, Potential-energy surfaces of CH+ 3 and CH- 3, J. Chem. Phys. 50, 1443–1448 (1969).CrossRefGoogle Scholar
  58. 55.
    R. E. Kari and I. G. Csizmadia, Configuration interaction wavefunctions and computed inversion barriers for NH3 and CH- 3, J. Chem. Phys. 56, 4337–4344 (1972).CrossRefGoogle Scholar
  59. 56.
    J. J. C. Mulder and J. S. Wright, The electronic structure and stability of CH+ 5 and CH- 5, Chem. Phys. Lett. 5, 445–449 (1970).CrossRefGoogle Scholar
  60. 57.
    A. Streitwieser and P. H. Owens, SCF calculations of acidities of distorted methanes, Tetrahedron Lett., 1973, 5221–5224.Google Scholar
  61. 58.
    A. J. Duke, A Hartree-Fock study of the methyl anion and its inversion potential surface: use of an augmented basis set for this species, Chem. Phys. Lett. 21, 275–282 (1973).CrossRefGoogle Scholar
  62. 59.
    A. Rauk, L. C. Allen, and E. Clementi, Electronic structure and inversion barrier of ammonia, J. Chem. Phys. 52, 4133–4144 (1970).CrossRefGoogle Scholar
  63. 60.
    R. M. Stevens, Accurate SCF calculation for ammonia and its inversion motion, J. Chem. Phys. 55, 1725–1729 (1971).CrossRefGoogle Scholar
  64. 61.
    P. Dejardin, E. Kochanski, A. Veillard, B. Roos, and P. Siegbahn, MC-SCF and CI calculations for the ammonia molecule, J. Chem. Phys. 59, 5546–5553 (1973).CrossRefGoogle Scholar
  65. 62.
    R. M. Stevens, CI calculations for the inversion barrier of ammonia, J. Chem. Phys. 61, 2086–2090 (1974).CrossRefGoogle Scholar
  66. 63.
    H. Lischka and V. Dyczmons, The molecular structure of H3O+ by the ab initio SCF method and with inclusion of correlation energy, Chem. Phys. Lett. 23, 167–172 (1973).CrossRefGoogle Scholar
  67. 64.
    D. T. Clark, Non-empirical LCAO-MO-SCF calculations with Gaussian type functions on the aromaticity and anti-aromaticity of cyclopropenyl cation and anion, Chem. Commun. 1969, 637–638.Google Scholar
  68. 65.
    D. T. Clark and D. R. Armstrong, Pseudo-aromaticity and -anti-aromaticity in cyclopropyl cation and anion, Chem. Commun. 1969, 850–851.Google Scholar
  69. 66.
    J. M. Lehn, B. Munsch, and P. Millie, Theoretical conformational analysis. IV. An ab initio SCF-LCAO-MO study of methylenimine and of vinyl anion, Theor. Chim. Acta 16, 351–372 (1970).CrossRefGoogle Scholar
  70. 67.
    R. Hoffmann, L. Radom, J. A. Pople, P.V.R. Schleyer, W. J. Hehre, and L. Salem, Strong conformational consequences of hyperconjugation, J. Am. Chem. Soc. 94, 6221–6223 (1972).CrossRefGoogle Scholar
  71. 68.
    S. Wolfe, L. M. Tel, J. H. Liang, and I. G. Csizmadia, Stereochemical consequences of adjacent electron pairs. A theoretical study of rotation-inversion in ethylene dicarbanion, J. Am. Chem. Soc. 94, 1361–1364 (1972).CrossRefGoogle Scholar
  72. 69.
    S. Wolfe, L. M. Tel, and I. G. Csizmadia, The gauche effect. A theoretical study of the topomerization (degenerate racemization) and tautomerization of methoxide ion tautomer, Can. J. Chem. 51, 2423–2432 (1973).CrossRefGoogle Scholar
  73. 70.
    R. Bonaccorsi, C. Petrongolo, E. Scrocco, and J. Tomasi, SCF wavefunction for the ground state of CN- and the change of the correlation energy in some simple protonation processes, Chem. Phys. Lett. 3, 473–475 (1969).CrossRefGoogle Scholar
  74. 71.
    L. Radom, Effects of alkyl groups on acidities and basicities in the gas phase. An ab initio molecular orbital study, Aust. J. Chem. 28, 1–6 (1975).CrossRefGoogle Scholar
  75. 72.
    A. C. Hopkinson and I. G. Csizmadia, The proton affinities of the acetylene molecule, and of the acetylide and diacetylide ions, Chem. Commun. 1971, 1291–1292.Google Scholar
  76. 73.
    L. M. Tel, S. Wolfe, and I. G. Csizmadia, Near-molecular Hartree-Fock wavefunctions for CH3O-, CH3OH, and CH3OH+ 2, J. Chem. Phys. 59, 4047–4060 (1973).CrossRefGoogle Scholar
  77. 74.
    L. Radom, Ab initio molecular orbital calculations on anions. Determination of gas phase acidities, J. Chem. Soc., Chem. Commun. 1974, 403–404.Google Scholar
  78. 75.
    A. Streitwieser, P. H. Owens, R. A. Wolf, and J. E. Williams, Ab initio SCF calculations of the acidity of distorted ethanes and ethylenes, J. Am. Chem. Soc. 96, 5448–5451 (1974).CrossRefGoogle Scholar
  79. 76.
    G. H. F. Diercksen and W. P. Kraemer, SCF MO LCGO studies on hydrogen bonding. The system (FHOH)-, Chem. Phys. Lett. 5, 570–572 (1970).CrossRefGoogle Scholar
  80. 77.
    W. P. Kraemer and G. H. F. Diercksen, SCF LCAO MO studies on the hydration of ions. The system F-·2H2O, Theor. Chim. Acta 27, 265–272 (1972).CrossRefGoogle Scholar
  81. 78.
    H. Kistenmacher, H. Popkie, and E. Clementi, Study of the structure of molecular complexes. III. Energy surface of a water molecule in the field of a fluorine or chlorine atom, J. Chem. Phys. 58, 5627–5638 (1973).CrossRefGoogle Scholar
  82. 79.
    H. Kistenmacher, H. Popkie, and E. Clementi, Study of the structure of molecular complexes. V. Heat of formation for the Li+, Na+, K+, F- and Cl- ion complexes with a single water molecule, J. Chem. Phys. 59, 5842–5848 (1973).CrossRefGoogle Scholar
  83. 80.
    H. Kistenmacher, H. Popkie, and E. Clementi, Study of the structure of molecular complexes. VIII. Small clusters of water molecules surrounding Li+, Na+, K+, F-, and Cl- ions, J. Chem. Phys. 61, 799–815 (1974).CrossRefGoogle Scholar
  84. 81.
    D. T. Clark and D. R. Armstrong, Non-empirical LCAO-MO-SCF calculations with Gaussian type functions on the electrocyclic transformation of cyclopropyl to allyl. II. Anion transformation, Theor. Chim. Acta 14, 370–382 (1969).CrossRefGoogle Scholar
  85. 82.
    R. B. Woodward and R. Hoffmann, The conservation of orbital symmetry, Angew Chem., Int. Ed. Engl. 8, 781–853 (1969).CrossRefGoogle Scholar
  86. 83.
    D. T. Clark and D. R. Armstrong, Non-empirical LCAO-MO-SCF calculations with Gaussian type functions on the electrocyclic transformation of cyclopropyl to allyl. I. Cation transformation, Theor. Chim. Acta 13, 365–380 (1969).CrossRefGoogle Scholar
  87. 84.
    L. Radom, P. C. Hariharan, J. A. Pople, and P. V. R. Schleyer, Molecular orbital theory of the electronic structure of organic compounds. XIX. Geometries and energies of C3H+ 5 cations. Energy relationships among allyl, vinyl and cyclopropyl cations, J. Am. Chem. Soc. 95, 6531–6544 (1973).CrossRefGoogle Scholar
  88. 85.
    C. D. Ritchie and H. F. King, The absence of a barrier in the theoretical potential energy surface for the reaction of hydride with hydrogen fluoride, J. Am. Chem. Soc. 88, 1069–1070 (1966).CrossRefGoogle Scholar
  89. 86.
    C. D. Ritchie and H. F. King, Theoretical studies of proton-transfer reactions. I. Reactions of hydride ion with hydrogen fluoride and hydrogen molecules, J. Am. Chem. Soc. 90, 825–833 (1968).CrossRefGoogle Scholar
  90. 87.
    C. D. Ritchie and H. F. King, Theoretical studies of proton-transfer reactions. II. The reaction of water with hydride ion, J. Am. Chem. Soc. 90, 833–838 (1968).CrossRefGoogle Scholar
  91. 88.
    W. T. A. M. van der Lugt and P. Ros, Retention and inversion in bimolecular substitution reactions of methane, Chem. Phys. Lett. 4, 389–392 (1969).CrossRefGoogle Scholar
  92. 89.
    C. D. Ritchie and G. A. Chappell, An ab initio LCGO-MO-SCF calculation of the potential energy surface for an S N2 reaction, J. Am. Chem. Soc. 92, 1819–1821 (1970).CrossRefGoogle Scholar
  93. 90.
    A. Dedieu and A. Veillard, A comparative study of some S N2 reactions through ab initio calculations, J. Am. Chem. Soc. 94, 6730–6738 (1972).CrossRefGoogle Scholar
  94. 91.
    A. Dedieu, A. Veillard and B. Roos, in:Proceedings of the 6th Jerusalem Symposium on Quantum Chemistry and Biochemistry (E. D. Bergmann and B. Pullman, eds.), pp. 371–377, Israel Academy of Sciences and Humanities, Jerusalem (1974).Google Scholar
  95. 92.
    V. Dyczmons and W. Kutzelnigg, Ab initio calculations on small hydrides including electron correlation. XII. The ions CH+ 5 and CH- 5, Theor. Chim. Acta 33, 239–247 (1974).CrossRefGoogle Scholar
  96. 93.
    A. Dedieu and A. Veillard, Ab initio calculation of activation energy for an S N2 reaction, Chem. Phys. Lett. 5, 328–330 (1970).CrossRefGoogle Scholar
  97. 94.
    A. J. Duke and R. F. W. Bader, A Hartree-Fock SCF calculation of the activation energies for two S N 2 reactions, Chem. Phys. Lett. 10, 631–635 (1971).CrossRefGoogle Scholar
  98. 95.
    R. F. W. Bader, A. J. Duke, and R. R. Messer, Interpretation of the charge and energy changes in two nucleophilic displacement reactions, J. Am. Chem. Soc. 95, 7715–7721 (1973).CrossRefGoogle Scholar
  99. 96.
    G. Berthier, D. J. David, and A. Veillard, Ab initio calculations on a typical S N2 reaction. Electronic structure of methyl fluoride and of the transition state (FCH3F)-, Theor. Chim. Acta 14, 329–338 (1969).CrossRefGoogle Scholar
  100. 97.
    D. K. Bohme, G. I. Mackay, and J. D. Payzant, Activation energies in nucleophilic displacement reactions measured at 296°K in vacuo, J. Am. Chem. Soc. 96, 4027–4028 (1974).CrossRefGoogle Scholar
  101. 98.
    G. S. Hammond, A correlation of reaction rates, J. Am. Chem. Soc. 77, 334–338 (1955).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Leo Radom
    • 1
  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia

Personalised recommendations