Advertisement

Carbonium Ions: Structural and Energetic Investigations

  • Warren J. Hehre
Part of the Modern Theoretical Chemistry book series (MTC, volume 4)

Abstract

Of the many inroads made by ab initio molecular orbital theory in recent years, perhaps the most impressive have been efforts directed at questions of structure and stability of reactive chemical intermediates. Such species are generally too short-lived to be amenable to direct spectroscopic observation and characterization. Hence, even the most rudimentary knowledge about them— information that might normally be taken for granted—must be gained from theory and not by experimental probes. For example, a half-century of chemical intuition, resting primarily upon experiment, leads us to suggest a tetrahedral geometry for methane, but this chemical intuition has little to offer regarding possible structures which the molecule might adopt after being protonated. That is to say, there is no precedent in our accumulated experience for such a species, nor do we have the tools ready in our experimental arsenal to explore the issue.

Keywords

Molecular Orbital Theory Methyl Cation Benzyl Cation Allyl Cation Vinyl Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Olah, Carbocations and electrophilic reactions Angew. Chem., Int. Ed. Engl. 12, 173–212 (1973).CrossRefGoogle Scholar
  2. 2..
    W. J. Hehre, R. F. Stewart, and J. A. Pople, Self-consistent molecular orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals, J. Chem. Phys. 51, 2657–2664 (1969).CrossRefGoogle Scholar
  3. 3..
    W. A. Lathan, W. J. Hehre, L. A. Curtiss, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. X. A systematic study of geometries and energies of AHn molecules and cations, J. Am. Chem. Soc. 93, 6377–6387 (1971).CrossRefGoogle Scholar
  4. 4..
    W. A. Lathan, L. A. Curtiss, W. J. Hehre, J. B. Lisle, and J. A. Pople, Molecular orbital structures for small organic molecules and cations, in : Progress in Physical Organic Chemistry (A. Streitwieser, Jr., and R. W. Taft, eds.), Vol. 11, pp. 175–261, Wiley-Interscience, New York (1974).Google Scholar
  5. 5..
    L. Radom, W. A. Lathan, W. J. Hehre, and J. A. Pople, Molecular orbital theory of the electronic structure of organic componds. VIII. Geometries, energies and polarities of C3 hydrocarbons, J. Am. Chem. Soc. 93, 5339–5342 (1971).CrossRefGoogle Scholar
  6. 6..
    W. J. Hehre and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. XXVI. Geometries, energies and polarities of C4 hydrocarbons, J. Am. Chem. Soc. 97, 6941–6955(1975).CrossRefGoogle Scholar
  7. 7.
    J. A. Pople, A priori geometry predictions, this volume, Chapter 1.Google Scholar
  8. 8.
    R. Ditchfield, W. J. Hehre, and J. A. Pople, Self-consistent molecular orbital methods. IX. An extended Gaussian-type basis for molecular orbital studies of organic molecules, J. Chem. Phys. 54, 724–728(1971).CrossRefGoogle Scholar
  9. 9.
    W. A. Lathan, L. Radom, P. C. Hariharan, W. J. Hehre, and J. A. Pople, Structures and stabilities of three-membered rings from ab initio molecular orbital theory, Fortsch. Chem. Forsch. 40, 1–45 (1973).Google Scholar
  10. 10.
    P. C. Hariharan and J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, Theor. Chim. Acta 28, 213–222 (1973).CrossRefGoogle Scholar
  11. 11.
    W. J. Hehre, R. Ditchfield, and J. A. Pople, Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules, J. Chem. Phys. 56, 2257–2261 (1972).CrossRefGoogle Scholar
  12. 12.
    A. D. Walsh, The electronic orbital, shapes and spectra of polyatomic molecules, parts I-X, J. Chem. Soc. 2260–2331 (1953).Google Scholar
  13. 13.
    W. A. Lathan, W. J. Hehre, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. VI. Geometries and energies of small hydrocarbons, J. Am. Chem. Soc. 93, 808–815 (1972).Google Scholar
  14. 14.
    P. C. Hariharan, W. A. Lathan, and J. A. Pople, Molecular orbital theory of simple carbonium ions, Chem. Phys. Lett. 14, 385–388 (1972).CrossRefGoogle Scholar
  15. 15.
    V. Dyczmons and W. Kutzelnigg, Ab initio calculations of small hydrides including electron correlation. XII. The ions CH+ 5 and CH- 5, Theor. Chim. Acta 33, 239–247 (1974).CrossRefGoogle Scholar
  16. 16.
    J. A. Pople and R. K. Nesbet, Self-consistent orbitals for radicals, J. Chem. Phys. 22, 571–672 (1954).CrossRefGoogle Scholar
  17. 17.
    B. Zurawski, R. Ahlrichs, and W. Kutzelnigg, Have ions C2H+ 3 and C3H+ 5 classical or non-classical structure? Chem. Phys. Lett. 21, 309–313 (1973).CrossRefGoogle Scholar
  18. 18.
    J. E. Williams, J. V. Buss, L. C. Allen, P. v. R. Schleyer, W. A. Lathan, W. J. Hehre, and J. A. Pople, Barriers in ethyl cations, J. Am. Chem. Soc. 92, 2141–2143 (1970).CrossRefGoogle Scholar
  19. 19.
    R. Hoffmann, L. Radom, J. A. Pople, P. v. R. Schleyer, W. J. Hehre, and L. Salem, Strong conformational consequences of hyperconjugation, J. Am. Chem. Soc. 94, 6221–6223 (1972).CrossRefGoogle Scholar
  20. 20.
    L. Radom, P. C. Hariharan, J. A. Pople; and P. v. R. Schleyer, Molecular orbital of the electronic structure of organic compounds. XXII. Structures and stabilities of C3H+ 3 and C3H+ cations, J. Am. Chem. Soc. 98, 10–14 (1976).CrossRefGoogle Scholar
  21. 21.
    M. Sundaralingam and L. H. Jensen, The structure of a carbonium ion. Refinement of the crystal and molecular structure of sym-triphenylcyclopropenium Perchlorate, J. Am. Chem. Soc. 88, 198–204 (1966).CrossRefGoogle Scholar
  22. 22.
    A. T. Ku and M. Sundaralingam, X-ray studies on cyclopropenyl cations. II. Crystal and molecular structure of 1,2,3-trisdimethylaminocyclopropenium Perchlorate, J. Am. Chem. Soc. 94, 1688–1692 (1972).CrossRefGoogle Scholar
  23. 23.
    L. Radom, P. C. Hariharan, J. A. Pople, and P. v. R. Schleyer, Molecular orbital theory of the electronic structure of organic compounds. XIX. Geometries and energies of C3H+ 5 cations. Energy relationships among allyl, vinyl and cyclopropyl cations, J. Am. Chem. Soc. 95, 6531–6544 (1973).CrossRefGoogle Scholar
  24. 24.
    L. Radom, J. A. Pople, and P. v. R. Schleyer, Effects of substituents on the mechanism of stereomutation of allyl cations, J. Am. Chem. Soc. 95, 8193–8195 (1973).CrossRefGoogle Scholar
  25. 25.
    L. Salem and C. Rowland, the electronic properties of diradicals, Angew. Chem., Int. Ed. Engl. 11, 92–111 (1972).CrossRefGoogle Scholar
  26. 26.
    W. J. Hehre, Theoretical approaches to the structure of carbocations, Acc. Chem. Res. 8, 369–376 (1975).CrossRefGoogle Scholar
  27. 27.
    L. Radom, J. A. Pople, V. Buss, and P. v. R. Schleyer, Molecular orbital theory of the electronic structure of organic compounds. XI. Geometries and energies of C3H+ 7 cations, J. Am. Chem. Soc. 94, 311–321 (1972).CrossRefGoogle Scholar
  28. 28.
    P. C. Hariharan, L. Radom, J. A. Pople, and P. v. R. Schleyer, Molecular orbital theory of the electronic structure of organic compounds. XX. C3H7 cations with a polarized basis set, J. Am. Chem. Soc. 96, 599–601 (1974).CrossRefGoogle Scholar
  29. 29.
    D. Cremer, J. S. Binkley, J. A. Pople, and W. J. Hehre, Molecular orbital theory of the electronic structure of organic compounds. XXI. Rotational potentials for geminal methyl groups, J. Am. Chem. Soc. 96, 6900–6903 (1974).CrossRefGoogle Scholar
  30. 30.
    A. J. P. Devaquet and W. J. Hehre, Degenerate rearrangement in homocyclopropenyl cation. Violation of orbital symmetry control for a sigmatropic migration, J. Am. Chem. Soc. 96, 3644–3645 (1974).CrossRefGoogle Scholar
  31. 31.
    W. J. Hehre and A. J. P. Devaquet, Theoretical approaches to rearrangements in carbocations. III. The C4H5 system, J. Am. Chem. Soc. 98, 4370–4377 (1976).CrossRefGoogle Scholar
  32. 32.
    R. Hoffmann and R. B. Davidson, The valence orbitals of cyclobutane, J. Am. Chem. Soc. 93, 5699–5705 (1971).CrossRefGoogle Scholar
  33. 33.
    C. Krüger, P. J. Roberts, Y. H. Tsay, and J. B. Koster, The molecular structure of a complex of tetramethylcyclpbutadiene and aluminium chloride, containing a σ A1-C bond, J. Organometal. Chem. 78, 69–74 (1974).CrossRefGoogle Scholar
  34. 34.
    G. A. Olah, J. S. Staral, and G. Liang, Novel aromatic systems. I. The homocyclopropenyl cation, J. Am. Chem. Soc. 96, 6233–6235 (1974).CrossRefGoogle Scholar
  35. 35.
    G. A. Olah, J. S. Staral, R. J. Spear, and G. Liang, Novel aromatic systems. II. Preparation and study of the homocyclopropenium ion, the simplest homoaromatic system, J. Am. Chem. Soc. 97, 5489–5497 (1975).CrossRefGoogle Scholar
  36. 36.
    W. J. Hehre and P. C. Hiberty, The homoallyl cation, J. Am. Chem. Soc. 94, 5917–5918 (1972).CrossRefGoogle Scholar
  37. 37.
    W. J. Hehre and P. C. Hiberty, Interconverting cyclopropylcarbinyl cations, J. Am. Chem. Soc. 96, 302–304 (1974).CrossRefGoogle Scholar
  38. 38.
    W. J. Hehre, P. C. Hiberty, and J. S. Binkley, Theoretical approaches to rearrangements in carbocations. IV. The C4H7 system, J. Am. Chem. Soc., to be published.Google Scholar
  39. 39.
    K. B. Wiberg, B. A. Hess, Jr., and A. J. Ashe III. Cyclopropylcarbinyl and cyclobutyl cations, in:Carbonium ions (G. A. Olah and P. v. R. Schleyer, eds.), Vol. 3, pp. 1295–1345, Wiley, New York (1972).Google Scholar
  40. 40.
    G. A. Olah, C. L. Jeuell, D. P. Kelly, and R. D. Porter, Stable carbocations. CXIV. The structure of cyclopropylcarbinyl and cyclobutyl cations, J. Am. Chem. Soc. 94, 146–156 (1972).CrossRefGoogle Scholar
  41. 41.
    D. S. Kabakoff and E. Namanworth, Nuclear magnetic double resonance studies of the dimethylcyclopropylcarbinyl cation. Measurement of the rotation barrier, J. Am. Chem. Soc. 92, 3234–3235 (1970).CrossRefGoogle Scholar
  42. 42.
    W. J. Hehre, unpublished.Google Scholar
  43. 43.
    G. A. Olah, J. R. DeMember, A. Commeyras, and J. L. Bribes, Stables carbonium ions. LXXXV. Lasar raman and infrared spectroscopic study of alkylcarbonium ions, J. Am. Chem. Soc. 93, 459–463 (1971).CrossRefGoogle Scholar
  44. 44.
    L. Radom, J. A. Pople, and P. v. R. Schleyer, Molecular orbital theory of the electronic structure of organic compounds. XVI. Conformations and stabilities of substituted ethyl, propyl and butyl cations, J. Am. Chem. Soc. 94, 5935–5945 (1972).CrossRefGoogle Scholar
  45. 45.
    W. J. Hehre and P. v. R. Schleyer, Cyclopentadienyl and related (CH)+ 5 cations, J. Am. Chem. Soc. 95, 5837–5839 (1973).CrossRefGoogle Scholar
  46. 46.
    M. Saunders et al., Unsubstituted cyclopentadienyl cation, a ground state triplet, J. Am. Chem. Soc. 95, 3017–3018 (1973).CrossRefGoogle Scholar
  47. 47.
    R. E. Williams, Carboranes and boranes; polyhedra and polyhedral fragments, Inorg. Chem. 10, 210–214 (1971).CrossRefGoogle Scholar
  48. 48.
    W. D. Stohrer and R. Hoffmann, Bond-stretch isomerism and polytropal rearrangements in (CH)+ 5 (CH)- 5 and (CH)4CO, J. Am. Chem. Soc. 94, 1661–1668 (1972).CrossRefGoogle Scholar
  49. 49.
    S. Masamune, M. Sakai, and H. Ona, Nature of the (CH)+ 5 species. I. Solvolysis of 1,5-dimethyltricyclo[2.1.0.0]pent-3-yl benzoate, J. Am. Chem. Soc. 94, 8955–8956 (1972).CrossRefGoogle Scholar
  50. 50.
    S. Masamune, M. Sakai, H. Ona, and A. J. Jones, Nature of the (CH)+ 5 species. II. Direct observation of the carbonium ion of 3-hydroxyhomotetrahedrane derivatives, J. Am. Chem. Soc. 94, 8956–8958 (1972).CrossRefGoogle Scholar
  51. 51.
    H. Hart and M. Kuzuya, Evidence conderning the structure of (CH)+ 5 type carbonium ions, J. Am. Chem. Soc. 94, 8958–8960 (1972).CrossRefGoogle Scholar
  52. 52.
    W. J. Hehre and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. XV. The protonation of benzene, J. Am. Chem. Soc. 94, 6901–6904 (1972).CrossRefGoogle Scholar
  53. 53.
    W. J. Hehre, Theoretical approaches to rearrangements in carbocations. II. Degenerate rearrangements in bicyclo[3.1.0]hexenyl and homotropylium cations. On the stability of homoaromatic molecules, J. Am. Chem. Soc. 96, 5207–5217 (1974).CrossRefGoogle Scholar
  54. 54.
    D. M. Brouwer, E. L. Mackor, and C. MacLean, Arenonium ions, in:Carbonium Ions (G. A. Olah and P. v. R. Schleyer, eds.), Vol. 2, pp. 837–897, Wiley, New York (1970).Google Scholar
  55. 55.
    N. C. Baenziger and A. D. Nelson, The crystal structure of the tetrachloroaluminate salt of the heptamethylbenzene cation, J. Am. Chem. Soc. 90, 6602–6607 (1968).CrossRefGoogle Scholar
  56. 56.
    P. Menzel and F. Effenberger, σ-complex intermediates in acylation and sulfonylation of 1,3,5-tripyrrolidinobenzene, preparation, reactions and structure, Angew. Chem., Int. Ed. Engl. 14, 62–63 (1975).CrossRefGoogle Scholar
  57. 57.
    G. A. Olah, R. H. Schlosberg, D. P. Kelly, and G. D. Mateesu, Stable carbonium ions. IC. The benzenonium ion (C6H+ 7) and its degenerate rearrangement, J. Am. Chem. Soc. 92, 2546–2548 (1972).CrossRefGoogle Scholar
  58. 58.
    W. J. Hehre, R. T. McIver, Jr., J. A. Pople, and P. v. R. Schleyer, Alkyl substituent effects on the stability of protonated benzene, J. Am. Chem. Soc. 96, 7162–7163 (1974).CrossRefGoogle Scholar
  59. 59.
    E. M. Arnett and J. W. Larsen, Stabilities of carbocations in solution. IV. A large Baker-Nathan effect for alkylbenzenonium ions. J. Am. Chem. Soc. 91, 1438–1442 (1968).CrossRefGoogle Scholar
  60. 60.
    R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Academic Press, New York (1970).Google Scholar
  61. 61.
    J. F. Wolf, P. G. Harch, R. W. Taft, and W. J. Hehre, Substituent effects on the stability of carbocations. The anomalous case of phenyl vs. Cyclopropyl substitution, J. Am. Chem. Soc. 97, 2902–2904 (1975).CrossRefGoogle Scholar
  62. 62.
    J. L. M. Abboud, R. W. Taft, and W. J. Hehre, research in progress; and J. L. M. Abboud, W. J. Hehre, and R. W. Taft, Benzyl cation. A long lived species in the gas phase, J. Am. Chem. Soc. 98, 6072–6073 (1976).CrossRefGoogle Scholar
  63. 63.
    W. J. Hehre, The ethylenebenzenium cation, J. Am. Chem. Soc. 94, 5919–5920 (1972).CrossRefGoogle Scholar
  64. 64.
    W. J. Hehre, unpublished.Google Scholar
  65. 65.
    G. A. Olah, R. D. Porter, C. L. Jeuell, and A. M. White, Stable carbocations. CXXV. Proton and carbon 13 magnetic resonance studies of phenylcarbenium ions (benzyl cations). The effects of substituents on the stability of carbocations, J. Am. Chem. Soc. 94, 2044–2052 (1972).CrossRefGoogle Scholar
  66. 66.
    C. J. Lancelot, D. J. Cram, and P. v. R. Schleyer, Phenonium ions. The solvolysis of β-arylalkyl systems, in: Carbonium Ions (G. A. Olah and P. v. R. Schleyer, eds.), Vol. 3, pp. 1347–1483, Wiley, New York (1972).Google Scholar
  67. 67.
    G. A. Olah and R. D. Porter, Stable carbocations. CXXI. Carbon-13 magnetic resonance spectroscopy study of ethylenarenium ions (spiro-[2.5]-octadienyl cations, J. Am. Chem. Soc. 93, 6877–6887 (1971).CrossRefGoogle Scholar
  68. 68.
    J. A. Berson and J. A. Jenkins, Homotropylium-4-d ion. On the energy barrier to a non-least motion circumambulatory rearrangement, J. Am. Chem. Soc. 94, 8907–8908 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Warren J. Hehre
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations