Skip to main content

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 4))

Abstract

The field of transition metal compounds has always been in a special position in theoretical chemistry. For a long period, up to the sixties, the basic theory which governed this field was the crystal field theory(1) and its daughter the ligand field theory (born from the wedding of the crystal field theory, a physicist’s approach, with the molecular orbital theory, a chemist’s approach; see for instance Ref. 2). However, the reader is reminded that the first extended Hückel calculation dealt not with some hydrocarbons but with MnO -4 .(3) The molecular orbital approach to the electronic structure of transition metal complexes flourished in the sixties through many semiempirical approximations and in 1969 the ab initio treatment of the NiF 4-6 cluster(4,5) paved the way for ab initio calculations of transition metal compounds. It is mostly computational limitations which have in the past more or less prevented a wide application of the ab initio techniques to the chemistry of transition metal compounds. However, with the technical developments which may be forecast for the next few years, this type of calculation will probably become much more common. In this vast field that is open to the quantum chemist (in an authoritative book of inorganic chemistry, more than half of the text is devoted to the chemistry of the transition elements(6)), the most fruitful studies will probably correspond to some specific areas such as the study of conformations or the study of unstable species and transition states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bethe, Termaufspaltung in Kristallen, Ann. Phys. 3, 133–208 (1929).

    Article  CAS  Google Scholar 

  2. C. J. Ballhausen, Introduction to Ligand-Field Theory, McGraw-Hill, New York (1962).

    Google Scholar 

  3. M. Wolfsberg and L. Helmholz, The spectra and electronic structure of the tetrahedral ions MnO -4 CrO 2-4 and ClO -4 , J. Chem. Phys. 20, 837–843 (1952).

    Article  CAS  Google Scholar 

  4. H. M. Gladney and A. Veillard, Limited basis set Hartree-Fock theory of NiF 4-6 , Phys. Rev. 180, 385–395 (1969).

    Article  CAS  Google Scholar 

  5. J. W. Moskowitz, C. Hollister, C. J. Hornback, and H. Basch, Self-consistent field study of the cluster model in ionic salts. I. NiF 4-6 , J. Chem. Phys. 53, 2570–2580 (1970).

    Article  CAS  Google Scholar 

  6. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience Publishers, New York (1972).

    Google Scholar 

  7. C. C. J. Roothaan, New developments in molecular orbital theory, Rev. Mod. Phys. 23, 69–89 (1951).

    Article  CAS  Google Scholar 

  8. S. F. Boys, Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system, Proc. R. Soc. London, Ser. A. 200, 542–554 (1950).

    Article  CAS  Google Scholar 

  9. B. Roos and P. Siegbahn, Gaussian basis sets for the first and second row atoms, Theor. Chim. Acta 17, 209–215 (1970).

    Article  CAS  Google Scholar 

  10. H. Basch, C. J. Hornback, and J. W. Moskowitz, Gaussian-orbital basis sets for the first-row transition-metal atoms, J. Chem. Phys 51, 1311–1318 (1969).

    Article  CAS  Google Scholar 

  11. A. J. H. Wachters, Gaussian basis set for molecular wave functions containing third-row atoms, J. Chem. Phys. 52, 1033–1036 (1970).

    Article  CAS  Google Scholar 

  12. B. Roos, A. Veillard, and G. Vinot, Gaussian basis sets for molecular wavefunctions containing third-row atoms, Theor. Chim. Acta 20, 1–11 (1971).

    Article  CAS  Google Scholar 

  13. A. J. H. Wachters, Ligand field splitting and magnetic exchange interaction in KNiF3, Ph.D. thesis, Rijksuniversiteit te Groningen, 1971.

    Google Scholar 

  14. H. Johansen, SCF LCAO MO calculations for MnC -4 , Chem. Phys. Lett. 17, 569–573 (1972).

    Article  CAS  Google Scholar 

  15. A. P. Mortola, H. Basch, and J. W. Moskowitz, An ab initio study of the permanganate ion, Int. J. Quantum Chem. 7, 725–737 (1973).

    Article  CAS  Google Scholar 

  16. H. Basch and A. P. Ginsberg, A molecular orbital description of TCH 2-9 , J. Phys. Chem. 73, 854–857 (1969).

    Article  CAS  Google Scholar 

  17. H. Basch, Electronic structure of the silver (l+)-ethylene complex, J. Chem. Phys. 56, 441–450 (1972).

    Article  CAS  Google Scholar 

  18. E. Clementi and D. R. Davis, Electronic structure of large molecular systems, J. Comput. Phys. 1, 223–244 (1966).

    Article  Google Scholar 

  19. A. Dedieu and A. Veillard, Electronic aspects of dioxygen binding to cobalt-Schiff-base-complexes, Theor. Chim. Acta 36, 231–235 (1975).

    Article  CAS  Google Scholar 

  20. J. W. Richardson, W. C. Nieuwpoort, R. R. Powell, and W. F. Edgell, Approximate radial functions for first-row transition metal atoms and ions. I. Inner-shell, 3d and 4s atomic orbitals, J. Chem. Phys. 36, 1057–1061 (1962).

    Article  CAS  Google Scholar 

  21. A. Strich, J. Demuynck, and A. Veillard, Intramolecular rearrangements in transition metal complexes. Ab initio calculations, Nouveau J. Chim. 1 (3) (1977).

    Google Scholar 

  22. C. R. Claydon and K. D. Carlson, Ground states, configurations and truncated orbital bases of the iron-series atoms, J. Chem. Phys. 49, 1331–1339 (1968).

    Article  CAS  Google Scholar 

  23. J. Demuynck, A. Veillard, and U. Wahlgren, Bonding, spectra and geometry of the tetra-chlorocuprate ion CuCl 2-4 . An ab initio LCAO-MO-SCF calculation, J. Am. Chem. Soc. 95, 5563–5574 (1973).

    Article  CAS  Google Scholar 

  24. M-M. Rohmer, J. Demuynck, and A. Veillard, A double-zeta type wave function for an organometallic: bis-(π-allyl)nickel, Theor. Chim. Acta 36, 93–102 (1974).

    Article  CAS  Google Scholar 

  25. M-M. Coutière, J. Demuynck, and A. Veillard, Ionization potentials of ferrocene and Koopmans’ theorem. An ab initio LCAO-MO-SCF calculation, Theor. Chim. Acta 27, 281–287 (1972).

    Article  Google Scholar 

  26. D. B. Neumann, H. Basch, R. L. Kornegay, L. C. Snyder, J. W. Moskowitz, C. Hornback, and S. P. Liebmann, The polyatom (version 2) System of Programs, Program No. 199, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana, 47401.

    Google Scholar 

  27. M. Benard, A. Dedieu, J. Demuynck, A. Strich, and A. Veillard, Asterix: a system of programs for the Univac 1110, unpublished.

    Google Scholar 

  28. V. Saunders, the atmol program, private communication.

    Google Scholar 

  29. W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople, Gaussian 70, Program No. 236, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana 47401, U.S.A.

    Google Scholar 

  30. G. H. F. Diercksen and W. P. Kraemer, Munich, molecular program system, Special Technical Report, Max-Planck Institut für Physik und Astrophysik, Munich, Germany.

    Google Scholar 

  31. A. Veillard, in: Computational Techniques in Quantum Chemistry and Molecular Physics (G. Diercksen, B. T. Sutcliffe, and A. Veillard, eds.), NATO ASI Series, D. Reidel, Dordrecht, Holland (1975).

    Google Scholar 

  32. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience Publishers, New York (1972). p. 620 and following.

    Google Scholar 

  33. A. R. Rossi and R. Hoffmann, Transition metal pentacoordination, Inorg. Chem. 14, 365–374 (1975).

    Article  CAS  Google Scholar 

  34. M. J. S. Dewar, A review of the π-complex theory, Bull. Soc. Chim. Fr. 18, C71–C79 (1951).

    Google Scholar 

  35. J. Chatt and L. A. Duncanson, Olefin coordination compounds. Part III. Infra-red spectra and structure: Attempted preparation of acetylene complexes, J. Chem. Soc. 1953, 2939–2947.

    Google Scholar 

  36. M. I. Davis and C. S. Speed, Gas-phase electron diffraction studies of some iron carbonyl complexes, J. Organometal. Chem. 21, 401–413 (1970).

    Article  CAS  Google Scholar 

  37. L. Salem, Forces between polyatomic molecules. II. Short-range repulsive forces, Proc. R. Soc. London, Ser. A 264, 379–391 (1961).

    Article  CAS  Google Scholar 

  38. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience Publishers, New York (1972). p. 731.

    Google Scholar 

  39. R. J. Buenker and S.D. Peyerimhoff, Molecular geometry and the Mulliken-Walsh molecular orbital model. An ab initio study, Chem. Rev. 74, 127–188 (1974).

    Article  CAS  Google Scholar 

  40. R. Uttech and H. Dietrich, Kristall- und Molekülstruktur von bis-methallylnickel Ni [(CH2)2OCH3]2, Z. Kristallogr. 122, 60–72 (1965).

    Article  CAS  Google Scholar 

  41. K. Vrieze, C. MacLean, P. Cossee, and C. W. Hilbers, Nuclear magnetic resonance studies in coordination chemistry I. Structure and conformational rearrangements of π-allyl complexes containing group-V donor ligands, Rec. Trav. Chim. Pays-Bas 85, 1077–1098 (1966).

    Article  CAS  Google Scholar 

  42. P. W. Jolly and G. Wilke, The Organic Chemistry of Nickel, p. 329, Academic Press, New York (1974).

    Google Scholar 

  43. E. O. Fischer and H. Werner, Metal π-Complexes, Vol. 1, p. 176, Elsevier, Amsterdam (1966).

    Google Scholar 

  44. S. Evans, M. L. H. Green, B. Jewitt, A. F. Orchard, and C. Pygall, Electronic structure of metal complexes containing π-cyclopentadienyl and related ligands, J. Chem. Soc., Faraday Trans. 2 68, 1847–1865 (1972).

    Article  CAS  Google Scholar 

  45. R. K. Bohn and A. Haaland, On the molecular structure of ferrocene, J. Organomet. Chem. 5, 470–476 (1966).

    Article  CAS  Google Scholar 

  46. M. D. Newton, F. P. Boer, and W. N. Lipscomb, Molecular orbitals for organic systems parametrized from SCF model calculations, J. Am. Chem. Soc. 88, 2367–2384 (1966).

    Article  CAS  Google Scholar 

  47. T. Koopmans, Über die Zuordnung von Wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms, Phys. Fenn. 1, 104–113 (1934).

    Google Scholar 

  48. D. R. Lloyd and N. Lynaugh, in: Electron Spectroscopy, Proceedings of an International Conference held at Asilomar, California, September 7–10, 1971 (D. E. Shirley ed.), North-Holland, Amsterdam (1972).

    Google Scholar 

  49. D. W. Turner, in: Physical Methods in Advanced Inorganic Chemistry (H. A. O. Hill and P. Day eds.), Interscience Publishers, New York (1968).

    Google Scholar 

  50. J. W. Rabalais, L. O. Werme, T. Bergmark, L. Karlsson, M. Hussain, and K. Siegbahn, Electron spectroscopy of open-shell systems: spectra of Ni(C5H5)2, Fe(C5H5)2, Mn(C5H5)2 and Cr(C5H5)2, J. Chem. Phys. 57, 1185–1192 (1972).

    Article  CAS  Google Scholar 

  51. J. Demuynck and A. Veillard, Electronic structure of the nickel tetracyanonickelate Ni(CN) 2-4 and nickel carbonyl Ni(CO)4. An ab initio LCAO-MO-SCF calculation, Theor. Chim. Acta 28, 241–265 (1973).

    Article  CAS  Google Scholar 

  52. K. Jorgensen, private communication.

    Google Scholar 

  53. P. Biloen and R. Prins, Level ordering in transition halide complexes. An X-ray photoelectron spectroscopy study, Chem. Phys. Lett. 16, 611–613 (1972).

    Article  CAS  Google Scholar 

  54. P. S. Bagus, Self-consistent-field wave functions for hole states of some Ne-like and Ar-like ions, Phys. Rev. A, 139, 619–634 (1965).

    CAS  Google Scholar 

  55. M-M. Rohmer and A. Veillard, Photoelectron spectrum of bis-(π-allyl) nickel, J. Chem. Soc. D. 1973, 250–251(1973).

    Google Scholar 

  56. M. F. Guest, I. H. Hillier, B. R. Higginson, and D. R. Lloyd, The electronic structure of transition metal complexes containing organic ligands. II. Low energy photoelectron spectra and ab initio SCF MO calculations of dibenzenechromium and benzenechromiumtricarbonyl, Mol. Phys. 29, 113–128 (1975).

    Article  CAS  Google Scholar 

  57. P. P. Ewald, Die Berechnung optischer und elecktrostatischer Gitterpotentiale, Ann. Phys. (Leipzig) 64, 253–287 (1921).

    Google Scholar 

  58. H. B. Gray and C. J. Ballhausen, A molecular orbital theory for square planar metal complexes, J. Am. Chem. Soc. 85, 260–265 (1963).

    Article  CAS  Google Scholar 

  59. Y. S. Sohn, D. N. Hendrickson, and H. B. Gray, Electronic structure of metallocenes, J. Am. Chem. Soc. 93, 3603–3612 (1971).

    Article  Google Scholar 

  60. E. R. Davidson, Selection of the proper canonical Roothaan-Hartree-Fock orbitals for particular applications. I. Theory, J. Chem. Phys. 57, 1999–2005 (1972).

    Article  CAS  Google Scholar 

  61. S. B. Piepho, P. N. Schatz, and A. J. McCaffery, Ultraviolet spectral assignment in the tetracyanocomplexes of platinum, palladium and nickel from magnetic circular dichroism, J. Am. Chem. Soc. 91, 5994–6001 (1969).

    Article  CAS  Google Scholar 

  62. M-M. Rohmer, A. Veillard, and M. H. Wood, Excited states and electronic spectrum of ferrocene, Chem. Phys. Lett. 29, 466–468 (1974).

    Article  CAS  Google Scholar 

  63. B. M. Hoffman, D. Diemente, and F. Basolo, Electron paramagnetic resonance studies of some cobalt(II) Schiff base compounds and their monomeric oxygen adducts, J. Am. Chem. Soc. 92, 61–65 (1970).

    Article  CAS  Google Scholar 

  64. J. P. Collman, R. R. Gagne, C. A. Reed, T. R. Halbert, G. Lang, and W. T. Robinson, Picket fence porphyrins. Synthetic models for oxygen binding hemoproteins, J. Am. Chem. Soc. 97, 1427–1439 (1975).

    Article  CAS  Google Scholar 

  65. B. M. Hoffman, T. Szymanski, and F. Basolo, Consideration of a report on the formulation of monomeric cobalt-dioxygen adducts. Continued support for Co(III)-O- 2, J. Am. Chem. Soc. 97, 673–674 (1975).

    Article  CAS  Google Scholar 

  66. L. Pauling and C. D. Coryell, The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin, Proc. Natl. Acad. Sci. USA 22, 210–216 (1936).

    Article  CAS  Google Scholar 

  67. L. Pauling, Haemoglobin, p. 57, Butterworth, London, (1949).

    Google Scholar 

  68. L. Pauling, Nature of the iron-oxygen bond in oxyhaemoglobin, Nature (London) 203, 182–183 (1964).

    Article  CAS  Google Scholar 

  69. J. J. Weiss, Nature of the iron-oxygen bond in oxyhaemoglobin, Nature (London) 202, 83–84 (1964).

    Article  CAS  Google Scholar 

  70. J. S. Griffith, On the magnetic properties of some haemoglobin complexes, Proc. R. Soc. London, Ser. A 235, 23–36 (1956).

    Article  CAS  Google Scholar 

  71. G. A. Rodley and W. T. Robinson, Structure of a monomeric oxygen-carrying complex, Nature (London) 235, 438–439 (1972).

    Article  CAS  Google Scholar 

  72. E. Melamud, B. L. Silver, and Z. Dori, Electron paramagnetic resonance of mononuclear cobalt oxygen carriers labeled with oxygen-17, J. Am. Chem. Soc. 96, 4689–4690 (1974).

    Article  CAS  Google Scholar 

  73. R. Hoffmann, M. M. L. Chen, M. Elian, A. R. Rossi, and D. M. P. Mingos, Pentacoordinate nitrosyls, Inorg. Chem. 13, 2666–2675 (1974).

    Article  CAS  Google Scholar 

  74. A. Dedieu, Thèse de Doctorat d’Etat, Strasbourg, France, 1975.

    Google Scholar 

  75. B. B. Wayland, J. V. Minkiewicz, and M. E. Abd-Elmageed, Spectroscopic studies for tetraphenylporphyrincobalt(II)complexes of CO, NO, O2, RNC and (RO)3P, and a bonding model for complexes of CO, NO and O2 with cobalt(II) and iron(II)porphyrins, J. Am. Chem. Soc. 96, 2795–2801 (1974).

    Article  CAS  Google Scholar 

  76. J. P. Collman, R. R. Gagne, H. B. Gray, and J. W. Hare, A low temperature infrared spectral study of iron(II)dioxygen complexes derived from a “picket fence” porphyrin, J. Am. Chem. Soc. 96, 6522–6524 (1974).

    Article  CAS  Google Scholar 

  77. A. Dedieu, M.-M. Rohmer, and A. Veillard, Binding of dioxygen to metal complexes. The oxygen adduct of Co(acacen), J. Am. Chem. Soc. 98, 5789 (1976).

    Article  CAS  Google Scholar 

  78. L. Salem, Intermolecular orbital theory of the interaction between conjugated systems. I. General theory, J. Am. Chem. Soc. 90, 543–552 (1968).

    Article  CAS  Google Scholar 

  79. Note Added in Proof

    Google Scholar 

  80. Since completion of this manuscript, the field of ab initio calculations for transition metal complexes and organometallics has expanded rapidly, largely due to the availability of very efficient programs.(79) A (13, 9, 7) Gaussian basis set is now available for the second transition series.(80) An ab initio calculation for Pd(CO)4 (81) invalidates the conclusions of molecular pseudopotential calculations regarding the sequence of the outermost occupied orbitals,(82) and the bonding schemes of Ni(CO)4 and Pd(CO)4 have been compared.(81) Calculated excitation energies for the PdCl 2-4 anion, with a double-zeta-type basis set for the valence shells, are in excellent agreement with the data (assignments and energy separations) derived from the polarized crystal spectrum.(83) Calculations for the ground and excited states have been reported for MnO -4 ,(84) TiCl4 and VC14,(85) CrOF5,(86) CrOCl 2-4 , (87) CoCl 2-4 . (88) The nature of the metal-metal interaction in binuclear complexes of Cr and Mo has been discussed in light of SCF and CI calculations.(89) The CI calculations for the binuclear complexes of Cr do not support a previous description in terms of a nonbonding configuration for the ground state of tetra-/x-carboxylatochromium(II) compounds.(90) Electronic and structural aspects of dioxygen binding to iron porphyrins considered as heme models have been discussed recently.(91–93)

    Google Scholar 

  81. M. Benard, Efficient computing of two-electron integrals for gaussian d-type orbitals, J. Chim. Phys. 1976, 413 (1976).

    Google Scholar 

  82. M. Benard and J. Demuynck, unpublished.

    Google Scholar 

  83. J. Demuynck, Failure of a pseudopotential calculation for Pd(CO)4, Chem. Phys. Lett. 45, 74 (1977).

    Article  CAS  Google Scholar 

  84. R. Osman, C. S. Ewig, and J. R. Van Wazer, Molecular pseudopotential calculations on transition metal complexes: Ni(CO)4, Pd(CO)4, Pt(CO)4, Chem. Phys. Lett. 39, 27 (1976).

    Article  CAS  Google Scholar 

  85. M. Benard, J. Demuynck, M-M. Rohmer, and A. Veillard, Ground and excited states of transition metal complexes, in: Spectroscopic des éléments de transition et des éléments lourds dans les solides (F. Gaume, ed.), Editions du C.N.R.S., Paris, in press.

    Google Scholar 

  86. H. Hsu, C. Peterson, and R. M. Pitzer, Calculations on the permanganate ion in the ground and excited states, J. Chem. Phys. 64, 791 (1976).

    Article  CAS  Google Scholar 

  87. I. H. Hillier and J. Kendrick, Ab initio calculations of the ground, excited, and ionic states of titanium and vanadium tetrachlorides, Inorg. Chem. 15, 520 (1976).

    Article  CAS  Google Scholar 

  88. C. D. Garner, I. H. Hillier, F. E. Mabbs, and M. F. Guest, The electronic structure of CrO3+ and MoO3+ complexes, Chem. Phys. Lett. 32, 224 (1976).

    Article  Google Scholar 

  89. C. D. Garner, J. Kendrick, P. Lambert, F. E. Mabbs, and I. H. Hillier, Single-crystal electronic spectrum of tetraphenylarsonium oxotetrachlorochromate(V) and an ab initio calculation of the bonding and excited states of oxotetrachlorochromate(V), Inorg. Chem. 15, 1287 (1976).

    Article  CAS  Google Scholar 

  90. I. H. Hillier, J. Kendrick, F. E. Mabbs, and C. D. Garner, An ab initio calculation of the bonding, excited states and g value of tetrachlorocobaltate(II) CoCl 2-4 , J. Am. Chem. Soc. 98, 395 (1976).

    Article  CAS  Google Scholar 

  91. M. Benard and A. Veillard, Nature of the metal-metal interaction in binuclear complexes of Cr and Mo.Nouveau J. Chim. 1, 97 (1977).

    CAS  Google Scholar 

  92. C. D. Garner, I. H. Hiller, M. F. Guest, J. C. Green, and A. W. Coleman, The nature of the metal-metal interaction in tetra-µ-carboxylatochromium(II) systems, Chem Phys. Lett. 41, 91 (1976).

    Article  CAS  Google Scholar 

  93. A. Dedieu, M.-M. Rohmer, M. Benard, and A. Veillard, Oxygen binding to iron porphyrins. An ab initio calculation, J. Am. Chem. Soc. 98, 3717 (1976).

    Article  CAS  Google Scholar 

  94. A. Dedieu, M.-M. Rohmer, and A. Veillard, Oxygen binding to iron porphyrins. Ab initio calculations, in: Metal-Ligand Interactions in Organic Chemistry and Biochemistry (B. Pullman and N. Goldblum, eds.), D. Reidel, Holland, in press.

    Google Scholar 

  95. A. Dedieu, M.-M. Rohmer, H. Veillard, and A. Veillard, The nature of oxygen binding in heme models, Bull. Soc. Chim. Belge 85, 953 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Veillard, A., Demuynck, J. (1977). Transition Metal Compounds. In: Schaefer, H.F. (eds) Applications of Electronic Structure Theory. Modern Theoretical Chemistry, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8541-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8541-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8543-1

  • Online ISBN: 978-1-4684-8541-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics