Transition Metal Compounds

  • A. Veillard
  • J. Demuynck
Part of the Modern Theoretical Chemistry book series (MTC, volume 4)


The field of transition metal compounds has always been in a special position in theoretical chemistry. For a long period, up to the sixties, the basic theory which governed this field was the crystal field theory(1) and its daughter the ligand field theory (born from the wedding of the crystal field theory, a physicist’s approach, with the molecular orbital theory, a chemist’s approach; see for instance Ref. 2). However, the reader is reminded that the first extended Hückel calculation dealt not with some hydrocarbons but with MnO 4 - .(3) The molecular orbital approach to the electronic structure of transition metal complexes flourished in the sixties through many semiempirical approximations and in 1969 the ab initio treatment of the NiF 6 4- cluster(4,5) paved the way for ab initio calculations of transition metal compounds. It is mostly computational limitations which have in the past more or less prevented a wide application of the ab initio techniques to the chemistry of transition metal compounds. However, with the technical developments which may be forecast for the next few years, this type of calculation will probably become much more common. In this vast field that is open to the quantum chemist (in an authoritative book of inorganic chemistry, more than half of the text is devoted to the chemistry of the transition elements(6)), the most fruitful studies will probably correspond to some specific areas such as the study of conformations or the study of unstable species and transition states.


Transition Metal Complex Orbital Energy Interaction Diagram Transition Metal Compound Empty Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bethe, Termaufspaltung in Kristallen, Ann. Phys. 3, 133–208 (1929).CrossRefGoogle Scholar
  2. 2.
    C. J. Ballhausen, Introduction to Ligand-Field Theory, McGraw-Hill, New York (1962).Google Scholar
  3. 3.
    M. Wolfsberg and L. Helmholz, The spectra and electronic structure of the tetrahedral ions MnO4- CrO42- and ClO4-, J. Chem. Phys. 20, 837–843 (1952).CrossRefGoogle Scholar
  4. 4.
    H. M. Gladney and A. Veillard, Limited basis set Hartree-Fock theory of NiF64-, Phys. Rev. 180, 385–395 (1969).CrossRefGoogle Scholar
  5. 5.
    J. W. Moskowitz, C. Hollister, C. J. Hornback, and H. Basch, Self-consistent field study of the cluster model in ionic salts. I. NiF64-, J. Chem. Phys. 53, 2570–2580 (1970).CrossRefGoogle Scholar
  6. 6.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience Publishers, New York (1972).Google Scholar
  7. 7.
    C. C. J. Roothaan, New developments in molecular orbital theory, Rev. Mod. Phys. 23, 69–89 (1951).CrossRefGoogle Scholar
  8. 8.
    S. F. Boys, Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system, Proc. R. Soc. London, Ser. A. 200, 542–554 (1950).CrossRefGoogle Scholar
  9. 9.
    B. Roos and P. Siegbahn, Gaussian basis sets for the first and second row atoms, Theor. Chim. Acta 17, 209–215 (1970).CrossRefGoogle Scholar
  10. 10.
    H. Basch, C. J. Hornback, and J. W. Moskowitz, Gaussian-orbital basis sets for the first-row transition-metal atoms, J. Chem. Phys 51, 1311–1318 (1969).CrossRefGoogle Scholar
  11. 11.
    A. J. H. Wachters, Gaussian basis set for molecular wave functions containing third-row atoms, J. Chem. Phys. 52, 1033–1036 (1970).CrossRefGoogle Scholar
  12. 12.
    B. Roos, A. Veillard, and G. Vinot, Gaussian basis sets for molecular wavefunctions containing third-row atoms, Theor. Chim. Acta 20, 1–11 (1971).CrossRefGoogle Scholar
  13. 13.
    A. J. H. Wachters, Ligand field splitting and magnetic exchange interaction in KNiF3, Ph.D. thesis, Rijksuniversiteit te Groningen, 1971.Google Scholar
  14. 14.
    H. Johansen, SCF LCAO MO calculations for MnC4-, Chem. Phys. Lett. 17, 569–573 (1972).CrossRefGoogle Scholar
  15. 15.
    A. P. Mortola, H. Basch, and J. W. Moskowitz, An ab initio study of the permanganate ion, Int. J. Quantum Chem. 7, 725–737 (1973).CrossRefGoogle Scholar
  16. 16.
    H. Basch and A. P. Ginsberg, A molecular orbital description of TCH92-, J. Phys. Chem. 73, 854–857 (1969).CrossRefGoogle Scholar
  17. 17.
    H. Basch, Electronic structure of the silver (l+)-ethylene complex, J. Chem. Phys. 56, 441–450 (1972).CrossRefGoogle Scholar
  18. 18.
    E. Clementi and D. R. Davis, Electronic structure of large molecular systems, J. Comput. Phys. 1, 223–244 (1966).CrossRefGoogle Scholar
  19. 19.
    A. Dedieu and A. Veillard, Electronic aspects of dioxygen binding to cobalt-Schiff-base-complexes, Theor. Chim. Acta 36, 231–235 (1975).CrossRefGoogle Scholar
  20. 20.
    J. W. Richardson, W. C. Nieuwpoort, R. R. Powell, and W. F. Edgell, Approximate radial functions for first-row transition metal atoms and ions. I. Inner-shell, 3d and 4s atomic orbitals, J. Chem. Phys. 36, 1057–1061 (1962).CrossRefGoogle Scholar
  21. 21.
    A. Strich, J. Demuynck, and A. Veillard, Intramolecular rearrangements in transition metal complexes. Ab initio calculations, Nouveau J. Chim. 1 (3) (1977).Google Scholar
  22. 22.
    C. R. Claydon and K. D. Carlson, Ground states, configurations and truncated orbital bases of the iron-series atoms, J. Chem. Phys. 49, 1331–1339 (1968).CrossRefGoogle Scholar
  23. 23.
    J. Demuynck, A. Veillard, and U. Wahlgren, Bonding, spectra and geometry of the tetra-chlorocuprate ion CuCl42-. An ab initio LCAO-MO-SCF calculation, J. Am. Chem. Soc. 95, 5563–5574 (1973).CrossRefGoogle Scholar
  24. 24.
    M-M. Rohmer, J. Demuynck, and A. Veillard, A double-zeta type wave function for an organometallic: bis-(π-allyl)nickel, Theor. Chim. Acta 36, 93–102 (1974).CrossRefGoogle Scholar
  25. 25.
    M-M. Coutière, J. Demuynck, and A. Veillard, Ionization potentials of ferrocene and Koopmans’ theorem. An ab initio LCAO-MO-SCF calculation, Theor. Chim. Acta 27, 281–287 (1972).CrossRefGoogle Scholar
  26. 26.
    D. B. Neumann, H. Basch, R. L. Kornegay, L. C. Snyder, J. W. Moskowitz, C. Hornback, and S. P. Liebmann, The polyatom (version 2) System of Programs, Program No. 199, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana, 47401.Google Scholar
  27. 27.
    M. Benard, A. Dedieu, J. Demuynck, A. Strich, and A. Veillard, Asterix: a system of programs for the Univac 1110, unpublished.Google Scholar
  28. 28.
    V. Saunders, the atmol program, private communication.Google Scholar
  29. 29.
    W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople, Gaussian 70, Program No. 236, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana 47401, U.S.A.Google Scholar
  30. 30.
    G. H. F. Diercksen and W. P. Kraemer, Munich, molecular program system, Special Technical Report, Max-Planck Institut für Physik und Astrophysik, Munich, Germany.Google Scholar
  31. 31.
    A. Veillard, in: Computational Techniques in Quantum Chemistry and Molecular Physics (G. Diercksen, B. T. Sutcliffe, and A. Veillard, eds.), NATO ASI Series, D. Reidel, Dordrecht, Holland (1975).Google Scholar
  32. 32.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience Publishers, New York (1972). p. 620 and following.Google Scholar
  33. 33.
    A. R. Rossi and R. Hoffmann, Transition metal pentacoordination, Inorg. Chem. 14, 365–374 (1975).CrossRefGoogle Scholar
  34. 34.
    M. J. S. Dewar, A review of the π-complex theory, Bull. Soc. Chim. Fr. 18, C71–C79 (1951).Google Scholar
  35. 35.
    J. Chatt and L. A. Duncanson, Olefin coordination compounds. Part III. Infra-red spectra and structure: Attempted preparation of acetylene complexes, J. Chem. Soc. 1953, 2939–2947.Google Scholar
  36. 36.
    M. I. Davis and C. S. Speed, Gas-phase electron diffraction studies of some iron carbonyl complexes, J. Organometal. Chem. 21, 401–413 (1970).CrossRefGoogle Scholar
  37. 37.
    L. Salem, Forces between polyatomic molecules. II. Short-range repulsive forces, Proc. R. Soc. London, Ser. A 264, 379–391 (1961).CrossRefGoogle Scholar
  38. 38.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience Publishers, New York (1972). p. 731.Google Scholar
  39. 39.
    R. J. Buenker and S.D. Peyerimhoff, Molecular geometry and the Mulliken-Walsh molecular orbital model. An ab initio study, Chem. Rev. 74, 127–188 (1974).CrossRefGoogle Scholar
  40. 40.
    R. Uttech and H. Dietrich, Kristall- und Molekülstruktur von bis-methallylnickel Ni [(CH2)2OCH3]2, Z. Kristallogr. 122, 60–72 (1965).CrossRefGoogle Scholar
  41. 41.
    K. Vrieze, C. MacLean, P. Cossee, and C. W. Hilbers, Nuclear magnetic resonance studies in coordination chemistry I. Structure and conformational rearrangements of π-allyl complexes containing group-V donor ligands, Rec. Trav. Chim. Pays-Bas 85, 1077–1098 (1966).CrossRefGoogle Scholar
  42. 42.
    P. W. Jolly and G. Wilke, The Organic Chemistry of Nickel, p. 329, Academic Press, New York (1974).Google Scholar
  43. 43.
    E. O. Fischer and H. Werner, Metal π-Complexes, Vol. 1, p. 176, Elsevier, Amsterdam (1966).Google Scholar
  44. 44.
    S. Evans, M. L. H. Green, B. Jewitt, A. F. Orchard, and C. Pygall, Electronic structure of metal complexes containing π-cyclopentadienyl and related ligands, J. Chem. Soc., Faraday Trans. 2 68, 1847–1865 (1972).CrossRefGoogle Scholar
  45. 45.
    R. K. Bohn and A. Haaland, On the molecular structure of ferrocene, J. Organomet. Chem. 5, 470–476 (1966).CrossRefGoogle Scholar
  46. 46.
    M. D. Newton, F. P. Boer, and W. N. Lipscomb, Molecular orbitals for organic systems parametrized from SCF model calculations, J. Am. Chem. Soc. 88, 2367–2384 (1966).CrossRefGoogle Scholar
  47. 47.
    T. Koopmans, Über die Zuordnung von Wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms, Phys. Fenn. 1, 104–113 (1934).Google Scholar
  48. 48.
    D. R. Lloyd and N. Lynaugh, in: Electron Spectroscopy, Proceedings of an International Conference held at Asilomar, California, September 7–10, 1971 (D. E. Shirley ed.), North-Holland, Amsterdam (1972).Google Scholar
  49. 49.
    D. W. Turner, in: Physical Methods in Advanced Inorganic Chemistry (H. A. O. Hill and P. Day eds.), Interscience Publishers, New York (1968).Google Scholar
  50. 50.
    J. W. Rabalais, L. O. Werme, T. Bergmark, L. Karlsson, M. Hussain, and K. Siegbahn, Electron spectroscopy of open-shell systems: spectra of Ni(C5H5)2, Fe(C5H5)2, Mn(C5H5)2 and Cr(C5H5)2, J. Chem. Phys. 57, 1185–1192 (1972).CrossRefGoogle Scholar
  51. 51.
    J. Demuynck and A. Veillard, Electronic structure of the nickel tetracyanonickelate Ni(CN)42- and nickel carbonyl Ni(CO)4. An ab initio LCAO-MO-SCF calculation, Theor. Chim. Acta 28, 241–265 (1973).CrossRefGoogle Scholar
  52. 52.
    K. Jorgensen, private communication.Google Scholar
  53. 53.
    P. Biloen and R. Prins, Level ordering in transition halide complexes. An X-ray photoelectron spectroscopy study, Chem. Phys. Lett. 16, 611–613 (1972).CrossRefGoogle Scholar
  54. 54.
    P. S. Bagus, Self-consistent-field wave functions for hole states of some Ne-like and Ar-like ions, Phys. Rev. A, 139, 619–634 (1965).Google Scholar
  55. 55.
    M-M. Rohmer and A. Veillard, Photoelectron spectrum of bis-(π-allyl) nickel, J. Chem. Soc. D. 1973, 250–251(1973).Google Scholar
  56. 56.
    M. F. Guest, I. H. Hillier, B. R. Higginson, and D. R. Lloyd, The electronic structure of transition metal complexes containing organic ligands. II. Low energy photoelectron spectra and ab initio SCF MO calculations of dibenzenechromium and benzenechromiumtricarbonyl, Mol. Phys. 29, 113–128 (1975).CrossRefGoogle Scholar
  57. 57.
    P. P. Ewald, Die Berechnung optischer und elecktrostatischer Gitterpotentiale, Ann. Phys. (Leipzig) 64, 253–287 (1921).Google Scholar
  58. 58.
    H. B. Gray and C. J. Ballhausen, A molecular orbital theory for square planar metal complexes, J. Am. Chem. Soc. 85, 260–265 (1963).CrossRefGoogle Scholar
  59. 59.
    Y. S. Sohn, D. N. Hendrickson, and H. B. Gray, Electronic structure of metallocenes, J. Am. Chem. Soc. 93, 3603–3612 (1971).CrossRefGoogle Scholar
  60. 60.
    E. R. Davidson, Selection of the proper canonical Roothaan-Hartree-Fock orbitals for particular applications. I. Theory, J. Chem. Phys. 57, 1999–2005 (1972).CrossRefGoogle Scholar
  61. 61.
    S. B. Piepho, P. N. Schatz, and A. J. McCaffery, Ultraviolet spectral assignment in the tetracyanocomplexes of platinum, palladium and nickel from magnetic circular dichroism, J. Am. Chem. Soc. 91, 5994–6001 (1969).CrossRefGoogle Scholar
  62. 62.
    M-M. Rohmer, A. Veillard, and M. H. Wood, Excited states and electronic spectrum of ferrocene, Chem. Phys. Lett. 29, 466–468 (1974).CrossRefGoogle Scholar
  63. 63.
    B. M. Hoffman, D. Diemente, and F. Basolo, Electron paramagnetic resonance studies of some cobalt(II) Schiff base compounds and their monomeric oxygen adducts, J. Am. Chem. Soc. 92, 61–65 (1970).CrossRefGoogle Scholar
  64. 64.
    J. P. Collman, R. R. Gagne, C. A. Reed, T. R. Halbert, G. Lang, and W. T. Robinson, Picket fence porphyrins. Synthetic models for oxygen binding hemoproteins, J. Am. Chem. Soc. 97, 1427–1439 (1975).CrossRefGoogle Scholar
  65. 65.
    B. M. Hoffman, T. Szymanski, and F. Basolo, Consideration of a report on the formulation of monomeric cobalt-dioxygen adducts. Continued support for Co(III)-O- 2, J. Am. Chem. Soc. 97, 673–674 (1975).CrossRefGoogle Scholar
  66. 66.
    L. Pauling and C. D. Coryell, The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin, Proc. Natl. Acad. Sci. USA 22, 210–216 (1936).CrossRefGoogle Scholar
  67. 67.
    L. Pauling, Haemoglobin, p. 57, Butterworth, London, (1949).Google Scholar
  68. 68.
    L. Pauling, Nature of the iron-oxygen bond in oxyhaemoglobin, Nature (London) 203, 182–183 (1964).CrossRefGoogle Scholar
  69. 69.
    J. J. Weiss, Nature of the iron-oxygen bond in oxyhaemoglobin, Nature (London) 202, 83–84 (1964).CrossRefGoogle Scholar
  70. 70.
    J. S. Griffith, On the magnetic properties of some haemoglobin complexes, Proc. R. Soc. London, Ser. A 235, 23–36 (1956).CrossRefGoogle Scholar
  71. 71.
    G. A. Rodley and W. T. Robinson, Structure of a monomeric oxygen-carrying complex, Nature (London) 235, 438–439 (1972).CrossRefGoogle Scholar
  72. 72.
    E. Melamud, B. L. Silver, and Z. Dori, Electron paramagnetic resonance of mononuclear cobalt oxygen carriers labeled with oxygen-17, J. Am. Chem. Soc. 96, 4689–4690 (1974).CrossRefGoogle Scholar
  73. 73.
    R. Hoffmann, M. M. L. Chen, M. Elian, A. R. Rossi, and D. M. P. Mingos, Pentacoordinate nitrosyls, Inorg. Chem. 13, 2666–2675 (1974).CrossRefGoogle Scholar
  74. 74.
    A. Dedieu, Thèse de Doctorat d’Etat, Strasbourg, France, 1975.Google Scholar
  75. 75.
    B. B. Wayland, J. V. Minkiewicz, and M. E. Abd-Elmageed, Spectroscopic studies for tetraphenylporphyrincobalt(II)complexes of CO, NO, O2, RNC and (RO)3P, and a bonding model for complexes of CO, NO and O2 with cobalt(II) and iron(II)porphyrins, J. Am. Chem. Soc. 96, 2795–2801 (1974).CrossRefGoogle Scholar
  76. 76.
    J. P. Collman, R. R. Gagne, H. B. Gray, and J. W. Hare, A low temperature infrared spectral study of iron(II)dioxygen complexes derived from a “picket fence” porphyrin, J. Am. Chem. Soc. 96, 6522–6524 (1974).CrossRefGoogle Scholar
  77. 77.
    A. Dedieu, M.-M. Rohmer, and A. Veillard, Binding of dioxygen to metal complexes. The oxygen adduct of Co(acacen), J. Am. Chem. Soc. 98, 5789 (1976).CrossRefGoogle Scholar
  78. 78.
    L. Salem, Intermolecular orbital theory of the interaction between conjugated systems. I. General theory, J. Am. Chem. Soc. 90, 543–552 (1968).CrossRefGoogle Scholar
  79. Note Added in ProofGoogle Scholar
  80. Since completion of this manuscript, the field of ab initio calculations for transition metal complexes and organometallics has expanded rapidly, largely due to the availability of very efficient programs.(79) A (13, 9, 7) Gaussian basis set is now available for the second transition series.(80) An ab initio calculation for Pd(CO)4 (81) invalidates the conclusions of molecular pseudopotential calculations regarding the sequence of the outermost occupied orbitals,(82) and the bonding schemes of Ni(CO)4 and Pd(CO)4 have been compared.(81) Calculated excitation energies for the PdCl42- anion, with a double-zeta-type basis set for the valence shells, are in excellent agreement with the data (assignments and energy separations) derived from the polarized crystal spectrum.(83) Calculations for the ground and excited states have been reported for MnO4-,(84) TiCl4 and VC14,(85) CrOF5,(86) CrOCl42-, (87) CoCl42-. (88) The nature of the metal-metal interaction in binuclear complexes of Cr and Mo has been discussed in light of SCF and CI calculations.(89) The CI calculations for the binuclear complexes of Cr do not support a previous description in terms of a nonbonding configuration for the ground state of tetra-/x-carboxylatochromium(II) compounds.(90) Electronic and structural aspects of dioxygen binding to iron porphyrins considered as heme models have been discussed recently.(91–93) Google Scholar
  81. 79.
    M. Benard, Efficient computing of two-electron integrals for gaussian d-type orbitals, J. Chim. Phys. 1976, 413 (1976).Google Scholar
  82. 80.
    M. Benard and J. Demuynck, unpublished.Google Scholar
  83. 81.
    J. Demuynck, Failure of a pseudopotential calculation for Pd(CO)4, Chem. Phys. Lett. 45, 74 (1977).CrossRefGoogle Scholar
  84. 82.
    R. Osman, C. S. Ewig, and J. R. Van Wazer, Molecular pseudopotential calculations on transition metal complexes: Ni(CO)4, Pd(CO)4, Pt(CO)4, Chem. Phys. Lett. 39, 27 (1976).CrossRefGoogle Scholar
  85. 83.
    M. Benard, J. Demuynck, M-M. Rohmer, and A. Veillard, Ground and excited states of transition metal complexes, in: Spectroscopic des éléments de transition et des éléments lourds dans les solides (F. Gaume, ed.), Editions du C.N.R.S., Paris, in press.Google Scholar
  86. 84.
    H. Hsu, C. Peterson, and R. M. Pitzer, Calculations on the permanganate ion in the ground and excited states, J. Chem. Phys. 64, 791 (1976).CrossRefGoogle Scholar
  87. 85.
    I. H. Hillier and J. Kendrick, Ab initio calculations of the ground, excited, and ionic states of titanium and vanadium tetrachlorides, Inorg. Chem. 15, 520 (1976).CrossRefGoogle Scholar
  88. 86.
    C. D. Garner, I. H. Hillier, F. E. Mabbs, and M. F. Guest, The electronic structure of CrO3+ and MoO3+ complexes, Chem. Phys. Lett. 32, 224 (1976).CrossRefGoogle Scholar
  89. 87.
    C. D. Garner, J. Kendrick, P. Lambert, F. E. Mabbs, and I. H. Hillier, Single-crystal electronic spectrum of tetraphenylarsonium oxotetrachlorochromate(V) and an ab initio calculation of the bonding and excited states of oxotetrachlorochromate(V), Inorg. Chem. 15, 1287 (1976).CrossRefGoogle Scholar
  90. 88.
    I. H. Hillier, J. Kendrick, F. E. Mabbs, and C. D. Garner, An ab initio calculation of the bonding, excited states and g value of tetrachlorocobaltate(II) CoCl42-, J. Am. Chem. Soc. 98, 395 (1976).CrossRefGoogle Scholar
  91. 89.
    M. Benard and A. Veillard, Nature of the metal-metal interaction in binuclear complexes of Cr and Mo.Nouveau J. Chim. 1, 97 (1977).Google Scholar
  92. 90.
    C. D. Garner, I. H. Hiller, M. F. Guest, J. C. Green, and A. W. Coleman, The nature of the metal-metal interaction in tetra-µ-carboxylatochromium(II) systems, Chem Phys. Lett. 41, 91 (1976).CrossRefGoogle Scholar
  93. 91.
    A. Dedieu, M.-M. Rohmer, M. Benard, and A. Veillard, Oxygen binding to iron porphyrins. An ab initio calculation, J. Am. Chem. Soc. 98, 3717 (1976).CrossRefGoogle Scholar
  94. 92.
    A. Dedieu, M.-M. Rohmer, and A. Veillard, Oxygen binding to iron porphyrins. Ab initio calculations, in: Metal-Ligand Interactions in Organic Chemistry and Biochemistry (B. Pullman and N. Goldblum, eds.), D. Reidel, Holland, in press.Google Scholar
  95. 93.
    A. Dedieu, M.-M. Rohmer, H. Veillard, and A. Veillard, The nature of oxygen binding in heme models, Bull. Soc. Chim. Belge 85, 953 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • A. Veillard
    • 1
  • J. Demuynck
    • 2
  1. 1.C.N.R.S.StrasbourgFrance
  2. 2.Université L. PasteurStrasbourgFrance

Personalised recommendations