Advertisement

Hydrogen Bonding and Donor—Acceptor Interactions

  • Peter A. Kollman
Part of the Modern Theoretical Chemistry book series (MTC, volume 4)

Abstract

Ab initio calculations have played an important role in the development of the theory of the hydrogen bond. First, the calculations have been able to predict properties of hydrogen-bonded complexes prior to experimental observation. Second, the ab initio calculations have been the standard against which semiempirical MO calculations and model theories could be evaluated. Finally, these calculations have provided an important framework for understanding the chemical properties of the hydrogen bond, and its relation to other donor-acceptor interactions and to covalent bonds.

Keywords

Proton Affinity Proton Donor Proton Acceptor Water Dimer Double Zeta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. J. Schaad, Theory of the hydrogen bond, in: Hydrogen Bonding (M. D. Joesten and L. J. Schaad, eds.), Marcel Dekker, Inc., New York (1974), Chap. 2.Google Scholar
  2. 2.
    P. A. Kollman and L. C. Allen, The theory of the hydrogen bond, Chem. Rev. 72, 283 (1972).Google Scholar
  3. 3.
    S. H. Lin, in :Physical ChemistryAn Advanced Treatise, Vol. 5 (H. Eyring, D. Henderson, and W. Jost, eds.), Chap. 8, p. 439, Academic Press, New York (1970).Google Scholar
  4. 4.
    A. S. N. Murthy and C. N. R. Rao, Recent theoretical studies of the hydrogen bond, J. Mol. Struct. 6, 253 (1970).Google Scholar
  5. 5.
    M. A. Ratner and J. R. Sabin, The wave mechanical treatment of hydrogen bonded systems in: Wave MechanicsThe First Fifty Years (S. S. Chissick, W. C. Price, and T. Ravendale, eds.), Butterworths, London (1973).Google Scholar
  6. 6.
    J. N. Murrell, The hydrogen bond, Chem. Britain 5, 107 (1969).Google Scholar
  7. 7.
    S. Bratoz, Electronic theories of hydrogen bonding, Adv. Quantum Chem. 3, 209 (1967).Google Scholar
  8. 8.
    C. A. Coulson, The hydrogen bond—review of the present position, Research (London) 10, 149 (1957).Google Scholar
  9. 9.
    G. C. Pimentel and A. L. McClellan, The Hydrogen Bond, W. H. Freeman, San Francisco (1960).Google Scholar
  10. 10.
    N. D. Sokolov, De la théorie de la liaison hydrogène, Ann. Chim. Phys. 10, 497 (1965).Google Scholar
  11. 11.
    M. L. Huggins, 50 years of hydrogen bond theory, Angew. Chem. Int. Ed. Eng. 10, 147 (1971).Google Scholar
  12. 12.
    C. J. Roothaan, New developments in molecular orbital theory, Rev. Mod. Phys. 23, 69 (1951).Google Scholar
  13. 13.
    H. J. Kolker and M. Karplus, Theory of nuclear magnetic shielding in diatomic molecules, J. Chem. Phys. 41, 1259 (1964).Google Scholar
  14. 14.
    S. Iwata and K. Morokuma, Extended Hartree-Fock theory for excited states, Chem. Phys. Lett. 16, 192 (1973).Google Scholar
  15. 15.
    J. Del Bene, R. Ditchfield, and J. A. Pople, Self-consistent molecular orbital methods. X. Molecular orbital studies of excited states with minimal and extended basis sets, J. Chem. Phys. 55, 2236 (1971)Google Scholar
  16. 15a.
    I. Shavitt, A general approach to configuration interaction, in:Modern Theoretical Chemistry, Vol. 3: Methods of Electronic Structure Theory (H. Schaefer, ed.), Chap. 6, Plenum Publishing, New York (1977).Google Scholar
  17. 16.
    A. C. Wahl and G. Das, Multiconfiguration self-consistent field method, in: Modern Theoretical Chemistry, Vol 3: Methods of Electronic Structure Theory (H. Schaefer, ed.), Chap. 3, Plenum Publishing, New York (1977).Google Scholar
  18. 17.
    H. Margenau and N. R. Kestner, The Theory of Intermolecular Forces, Pergamon Press, Oxford (1969).Google Scholar
  19. 18.
    F. Pilar, Elementary Quantum Chemistry, McGraw-Hill, New York (1968).Google Scholar
  20. 19.
    H. F. Schaefer, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, Massachusetts (1972).Google Scholar
  21. 20.
    P. A. Kollman and C. F. Bender, The structure of the H3O+ (hydronium) ion, Chem. Phys. Lett. 21, 271 (1973).Google Scholar
  22. 21.
    H. F. Schaefer, D. R. McLaughlin, F. E. Harris, and B. J. Alder, Phys. Rev. Lett. 25, 988 (1970).Google Scholar
  23. 22.
    C. A. Coulson and U. Danielsson, Ionic and covalent contributions to the hydrogen bond I and II, Ark. Fys. 8, 239–245 (1954).Google Scholar
  24. 23.
    H. Tsubomura, The nature of the hydrogen bond. I. The delocalization energy in the hydrogen bond as calculated by the atomic orbital method, Bull. Chem. Soc. Japan. 27, 445 (1954).Google Scholar
  25. 24.
    F. B. van Duijneveldt and J. N. Murrell, Some calculations on the hydrogen bond, J. Chem. Phys. 46, 1759 (1967)Google Scholar
  26. 24a.
    J. G. C. M. van Duijneveldt-van de Rijdt and F. B. van Duijneveldt, Perturbation calculations on the hydrogen bonds between some first row atoms, J. Am. Chem. Soc. 93, 5644 (1971) and references therein.Google Scholar
  27. 25.
    C. A. Coulson, The hydrogen bond, in : Hydrogen Bonding (D. Hadzi, ed.), p. 339, Pergamon Press, London (1959).Google Scholar
  28. 26.
    K. Morokuma, Molecular orbital studies of hydrogen bonds. III. C=O···H-O hydrogen bond in H2CO···H2O and H2CO···2H2O, J. Chem. Phys. 55, 1236 (1971).Google Scholar
  29. 27.
    M. Dreyfus and A. Pullman, A non-empirical study of the hydrogen bond between peptide units, Theor. Chim. Acta 19, 20 (1970).Google Scholar
  30. 28.
    P. A. Kollman and L. C. Allen, An SCF partitioning method for the hydrogen bond, Theor. Chim. Acta 18, 399 (1970).Google Scholar
  31. 29.
    P. A. Kollman and L. C. Allen, Hydrogen bonded dimers and polymers involving hydrogen fluoride, water and ammonia, J. Am. Chem. Soc. 92, 753 (1970)Google Scholar
  32. 29.
    P. A. Kollman and L. C. Allen, Hydrogen bonded dimers and polymers involving hydrogen fluoride, water and ammonia Chem. Rev. 72, 283 (1972).Google Scholar
  33. 30.
    M. van Thiel, E. D. Becker, and G. Pimentel, Infrared studies of hydrogen bonding of water by the matrix isolation technique, J. Chem. Phys. 27, 486 (1957).Google Scholar
  34. 31.
    T. H. Dunning and P. J. Hay, Basis sets for molecular calculations, in: Modern Theoretical Chemistry, Vol. 3: Methods of Electronic Structure Theory (H. Schaefer, ed.), Chap. 1, Plenum Publishing, New York (1977).Google Scholar
  35. 32.
    K. Morokuma and L. Pedersen, Molecular Orbital Studies of hydrogen bonds. An ab initio calculation for dimeric H2O, J. Chem. Phys. 48, 3275 (1968).Google Scholar
  36. 33.
    P. A. Kollman and L. C. Allen, Theory of the hydrogen bond: electronic structure and properties of the water dimer, J. Chem. Phys. 51, 3286 (1969).Google Scholar
  37. 34.
    J. Del Bene, Theoretical Study of open chain dimers and trimers containing CH3OH and H2O, J. Chem. Phys. 55, 4633 (1971).Google Scholar
  38. 35.
    J. Del Bene and J. A. Pople, Theory of molecular interactions. I. Molecular orbital studies of water polymer with a minimal Slater-type basis, J. Chem. Phys. 52, 4858 (1970).Google Scholar
  39. 36.
    K. Morokuma and J. R. Winick, Molecular orbital studies of hydrogen bonds: dimeric H2O with the Slater minimal basis set, J. Chem. Phys. 52, 1301 (1970).Google Scholar
  40. 37.
    D. Hankins, J. W. Moskowitz, and F. H. Stillinger, Water molecule interactions, J. Chem. Phys. 53, 4544 (1970).Google Scholar
  41. 38.
    G. H. F. Diercksen, SCF-MO-LCGO studies on hydrogen bonding. The water dimer, Theor. Chim. Acta 335(1971).Google Scholar
  42. 39.
    H. Popkie, H. Kistenmacher, and E. Clementi, Study of the structure of molecular complexes. IV. The Hartree-Fock potential for the water dimer and its application to the liquid state, J. Chem. Phys. 59, 1325 (1973).Google Scholar
  43. 40.
    A. Tursi and E. Nixon, Matrix isolation study of water dimer in solid nitrogen, J. Chem. Phys. 52, 154 (1970).Google Scholar
  44. 41.
    L. B. Magnusson, Infrared absorbance by water dimer in carbon tetrachloride solution, J. Phys. Chem. 74, 4221 (1970).Google Scholar
  45. 42.
    P. A. Kollman and A. D. Buckingham, The structure of the water dimer, Mol. Phys. 21, 567 (1971)Google Scholar
  46. 42a.
    L. B. Magnusson, The structure of the water dimer, Mol. Phys. 21, 571 (1967).Google Scholar
  47. 43.
    P. W. Atkins and M. C. R. Symons, Infrared spectrum of water dimer in carbon tetrachloride solution, Mol. Phys. 23, 831 (1972).Google Scholar
  48. 44.
    T. R. Dyke, B. J. Howard, and W. Klemperer, Radiofrequency and microwave spectrum of the hydrogen fluoride dimer: a nonrigid molecule, J. Chem. Phys. 56, 2442 (1972).Google Scholar
  49. 45.
    T. R. Dyke and J. S. Muenter, Microwave spectrum and structure of hydrogen bonded water dimer, J. Chem. Phys. 60, 2929 (1974).Google Scholar
  50. 46.
    L. Shipman and H. A. Scheraga, Structure, energetics and Dynamics of the water dimer, J. Phys. Chem. 78, 2055 (1974).Google Scholar
  51. 47.
    D. Eisenberg and W. Kauzmann, The Structure and Properties of Water, Oxford University Press, New York (1969).Google Scholar
  52. 48.
    J. D. Lambert, Association in polar vapours and binary vapour mixtures, Discuss. Faraday Soc. 15, 226 (1953)Google Scholar
  53. 48a.
    J. S. Rowlinson, The lattice energy of ice and the second virial coefficient of water vapour, Trans. Faraday Soc. 47, 120 (1951).Google Scholar
  54. 49.
    H. A. Gebbie, W. J. Burroughs, J. Chamberlain, J. E. Harries, and R. J. Jones, Dimers of the water molecule in the earth’s atmosphere, Nature 221, 143 (1969).Google Scholar
  55. 50.
    T. H. Dunning and P. J. Hay, Basis sets for molecular calculations, in: Modern Theoretical Chemistry, Vol. 3: Methods of Electronic Structure Theory (H. Schaefer, ed.), Chap. 1, Plenum Publishing, New York (1977).Google Scholar
  56. 51.
    A. Johansson, P. Kollman, and S. Rothenberg, An application of the functional Boys-Bernardi counterpoise method to molecular potential surfaces, Theor. Chim. Acta 29, 167 (1973).Google Scholar
  57. 52.
    D. Neumann and J. W. Moskowitz, One electron properties of near-Hartree-Fock wave functions, I. Water, J. Chem. Phys. 49, 2056 (1968).Google Scholar
  58. 53.
    A. Rauk, L. C. Allen, and E. Clementi, Electronic structure and inversion barrier of ammonia, J. Chem. Phys. 52, 4133 (1970).Google Scholar
  59. 54.
    B. Lentz and H. A. Scheraga, Water molecule interactions. Stability of cyclic polymers, J. Chem. Phys. 58, 5296 (1973).Google Scholar
  60. 55.
    J. Del Bene and J. A. Pople, Theory of molecular interactions. III. A comparison of studies of H2O polymers using different molecular orbital basis sets, J. Chem. Phys. 58, 3605 (1973).Google Scholar
  61. 56.
    J. Janzen and L. S. Bartell, Electron diffraction study of polymeric gaseous hydrogen fluoride, J. Chem. Phys. 50, 3611 (1969).Google Scholar
  62. 57.
    P. A. Kollman and L. C. Allen, Theory of the hydrogen bond: ab initio calculations on hydrogen fluoride dimer and the mixed water-hydrogen fluoride dimer, J. Chem. Phys. 52, 5085 (1970).Google Scholar
  63. 58.
    G. H. F. Diercksen and W. P. Kraemers, SCF-MO-LCGO studies on hydrogen bonding: the hydrogen fluoride dimer, Chem. Phys. Lett. 6, 419 (1970).Google Scholar
  64. 59.
    J. Del Bene and J. A. Pople, Theory of molecular interactions. II. Molecular orbital studies of HF polymer using a minimal Slater-type basis, J. Chem. Phys. 55, 2296 (1971).Google Scholar
  65. 60.
    L. C. Allen and P. A. Kollman, Cyclic systems containing divalent hydrogen symmetrically placed between sp 2 hydribized electron rich atoms. A new form of chemical bond?, J. Am. Chem. Soc. 92, 4108 (1970).Google Scholar
  66. 61.
    H. Lischka, Ab initio calculations on inter-molecular forces. III. Effect of electron correlation on the hydrogen bond in the hydrogen fluoride dimer, J. Am. Chem. Soc. 96, 4761 (1974).Google Scholar
  67. 62.
    D. R. Yarkony, S. V. O’Neil, H. F. Schaefer III, C. P. Baskin, and C. F. Bender, Interaction potential between two rigid HF molecules, J. Chem. Phys. 60, 855 (1974).Google Scholar
  68. 63.
    E. Clementi, J. Mehl, and W. von Niessen, Study of the electronic structure of molecules. XII. Hydrogen bridges in the guanine-cytosine pair and in the dimeric form of formic acid, J. Chem. Phys. 54, 508 (1971).Google Scholar
  69. 64.
    M. Dreyfus, B. Maigret, and A. Pullman, A non-empirical study of hydrogen bonding in the dimer of formamide, Theor. Chim. Ada 17, 109 (1970).Google Scholar
  70. 65.
    E. Clementi and J. N. Gayles, Study of the electronic structure of molecules. VII. Inner and outer complex in the NH4Cl formation from NH3 and HCl, J. Chem. Phys. 47, 3837 (1967) and references therein.Google Scholar
  71. 66.
    P. Goldfiner and G. Verhaegen, Stability of the gaseous ammonium chloride molecule, J. Chem. Phys. 50, 1467 (1969).Google Scholar
  72. 67.
    B. S. Ault and G. C. Pimentel, Infrared spectra of the ammonia-hydrochloric acid complex in solid nitrogen, J. Phys. Chem. 77, 1649 (1973).Google Scholar
  73. 68.
    P. Kollman, A. Johansson, and S. Rothenberg, A comparison of HCl and HF as proton donors, Chem. Phys. Lett. 24, 199 (1974).Google Scholar
  74. 69.
    B. S. Ault and G. C. Pimentel, Infrared spectrum of the water-hydrochloric acid complex in solid nitrogen, J. Phys. Chem. 77, 57 (1973).Google Scholar
  75. 70.
    M. D. Newton and S. Ehrenson, Ab initio studies on the structures and energetics of inner and outer shell hydrates of the proton and the hydroxide ion, J. Am. Chem. Soc. 93, 4971 (1971).Google Scholar
  76. 71.
    P. Kebarle, S. K. Searle, A. Zolla, J. Scarborough, and M. Arshadi, The solvation of the hydrogen ion by water molecules in the gas phase. Heats and entropies of solutions of individual reactions H+(H2O)n -1+H2O → H+(H2O)n , J. Am. Chem. Soc. 89, 6393 (1967).Google Scholar
  77. 72.
    W. Kraemer and G. Diercksen, SCF-LCGO-MO calculations on hydrogen bonding. The hydrogen fluoride dimer, Chem. Phys. Lett. 5, 463 (1970)Google Scholar
  78. 72a.
    P. A. Kollman and L. C. Allen, A theory of the strong hydrogen bond. Ab initio calculations on HF- 2 and H5O+ 2, J. Am. Chem. Soc. 92, 6101 (1970).Google Scholar
  79. 73.
    H. Kistenmacher, H. Popkie, and E. Clementi, Study of the structure of molecular complexes. V. Heat of formation for the Li+, Na+, K+, F- and Cl- complexes with a single water molecule, J. Chem. Phys. 59, 5842 (1973).Google Scholar
  80. 74.
    M. Arshadi, R. Yamdagni, and P. Kebarle, Hydration of the halide negative ions in the gas phase. II. Comparison of hydration energies for the alkali positive and halide negative ions, J. Phys. Chem. 74, 1475 (1970).Google Scholar
  81. 75.
    S. Bratoz and G. Bessis, Study of the structure of the FHF ion by the method of configuration interaction, C. R. Acad. Sci., Ser. C 249, 1881 (1959).Google Scholar
  82. 76.
    R. M. Erdahl, Valence bond theory and the electronic structure of molecules, Ph.D. thesis, Princeton University, 1965.Google Scholar
  83. 77.
    E. Clementi and A. D. McLean, SCF-LCAO-MO wave functions for the bifluoride ion, J. Chem. Phys. 36, 745 (1962).Google Scholar
  84. 78.
    A. D. McLean and M. Yoshimine, Tables of linear molecules, IBM J. Res. Dev. 11, 169 (1967).Google Scholar
  85. 79.
    P. A. Kollman and L. C. Allen, Theory of the strong hydrogen bond. Ab initio calculation on HF2 and H5O2, J. Am. Chem. Soc. 92, 6101 (1970).Google Scholar
  86. 80.
    P. Noble and R. Kortzeborn, LCAO-MO-SCF studies of HF- 2 and the related unstable systems HF2 and HeF2, J. Chem. Phys. 52, 5375 (1970).Google Scholar
  87. 81.
    J. Almlöf, Hydrogen bond studies 71. Ab initio calculations of the vibrational structure and equilibrium geometry in HF- 2 and DF- 2, Chem. Phys. Lett. 17, 49 (1972).Google Scholar
  88. 82.
    P. Bertoncini and A. C. Wahl, Ab initio calculation of the helium-helium potential at intermediate and large separations, Phys. Rev. Lett. 25, 991 (1970).Google Scholar
  89. 83.
    H. F. Schaefer, D. R. McLaughlin, F. E. Harris, and B. J. Alder, Calculation of the attractive He pair potential, Phys. Rev. Lett. 25, 988 (1970).Google Scholar
  90. 84.
    H. Lischka, Ab initio calculations on intermolecular forces. The systems He···HF and He-H2O, Chem. Phys. Lett. 20, 448 (1973).Google Scholar
  91. 85.
    M. Losonszy, J. W. Moskowifz, and F. H. Stillinger, Hydrogen bonding between neon and hydrogen fluoride, J. Chem. Phys. 61, 2438 (1974).Google Scholar
  92. 86.
    M. Losonszy, J. W. Moskowitz, and F. H. Stillinger, Hydrogen bonding between neon and water, J. Chem. Phys. 59, 3264 (1973).Google Scholar
  93. 87.
    S. E. Novick, P. Davies, S. J. Harris, and W. Klemperer, Determination of the structure of ArHCl, J. Chem. Phys. 59, 2273 (1973)Google Scholar
  94. 87a.
    S. J. Harris, S. E. Novick, and W. Klemperer, Determination of the structure of ArHF, J. Chem. Phys. 60, 3208 (1974).Google Scholar
  95. 88.
    C. P. Baskin, C. F. Bender, and P. A. Kollman, Dimers of lithium fluoride and sodium hydride, J. Am. Chem. Soc. 95, 5868 (1973).Google Scholar
  96. 89.
    P. A. Kollman, S. Rothenberg, and C. F. Bender, A theoretical prediction of the existence and properties of the lithium hydride dimer, J. Am. Chem. Soc. 94, 8016 (1972).Google Scholar
  97. 90.
    D. S. Marynick, J. H. Hall, and W. N. Lipscomb, Energy of formation of B2H6 from 2BH3 near the Hartree-Fock limit, JCP 61, 5460 (1974).Google Scholar
  98. 91.
    R. Ahlrichs, Correlation contribution to the dimerization of BH3 and LiH, Theor. Chim. Acta 35, 59 (1974).Google Scholar
  99. 92.
    E. Clementi and H. Popkie, Study of the structure of molecular complexes. I. Energy surface of a water molecule in the field of a lithium positive ion, J. Chem. Phys. 57, 1077 (1972).Google Scholar
  100. 93.
    G. H. F. Diercksen and W. P. Kraemer, SCF-MO-LCGO studies on the hydration of ions: the systems H+ H2O, Li+ H2O and Na+ H2O, Theor. Chim. Acta 23, 387 (1972);Google Scholar
  101. 93.
    G. H. F. Diercksen and W. P. Kraemer SCF-MO-LCGO studies on the hydration of ions: The system Li+ 2H2O, Theor. Chim. Acta 23, 393 (1972).Google Scholar
  102. 94.
    P. A. Kollman and I. D. Kuntz, The hydration number of Li+, J. Am. Chem. Soc. 96, 4766 (1974).Google Scholar
  103. 95.
    P. Schuster and H. W. Preuss, Ab initio calculations on the hydration of monatomic cations (LCAO-MO studies of molecular structure VII), Chem. Phys. Lett. 11, 35 (1971).Google Scholar
  104. 96.
    L. A. Curtiss and J. A. Pople, Molecular orbital calculation of some vibrational properties of the complex between HCN and HF, J. Mol. Spectrosc. 48, 413 (1973).Google Scholar
  105. 97.
    L. A. Curtiss and J. A. Pople, Ab initio calculation of the vibrational force field of the water dimer, J. Chem. Phys. (in press).Google Scholar
  106. 98.
    E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York (1955).Google Scholar
  107. 99.
    R. K. Thomas, Hydrogen bonding in the gas phase: the infrared spectrum of complexes of hydrogen fluoride with hydrogen cyanide and methyl cyanide, Proc. R. Soc. London, Ser. A 325, 133 (1971).Google Scholar
  108. 100.
    P. V. Huong and M. Couzi, The ir spectrum of gaseous hydrogen fluoride, J. Chem. Phys. 66, 1309 (1969).Google Scholar
  109. 101.
    R. W. Bolander, J. L. Cassner, and J. T. Zung, Semi-empirical determination of the hydrogen bond energy for water to the dimer, clusters in the vapor phase. I. General theory and application to the dimer, J. Chem. Phys. 50, 4402 (1969).Google Scholar
  110. 102.
    P. A. Kollman and L. C. Allen, The nature of the hydrogen bond. Dimers involving the electronegative atom of the first row, J. Am. Chem. Soc. 93, 4991 (1971).Google Scholar
  111. 103.
    P. A. Kollman, J. McKelvey, A. Johansson, and S. Rothenberg, Theoretical Studies of hydrogen bonded dimers: complexes involving HF, H2O, NH3, HCl, H2S, PH3, HCN, HNC, HCP, CH2NH, H2CS, H2CO, CH4, CF3H, C2H2, C2H4, C6H6, F- and H3O+, J. Am. Chem. Soc. 97, 955 (1975).Google Scholar
  112. 104.
    W. Topp and L. C. Allen, Structure and properties of hydrogen bonds between the electronegative atoms of the second and third rows, J. Am. Chem. Soc. 96, 5291 (1974).Google Scholar
  113. 105.
    E. U. Franck and F. Meyer, HF III, Specific heat and association in the gas phase at low pressure, J. Electrochem. 63, 577 (1959).Google Scholar
  114. 106.
    J. E. Lowder, Spectroscopic studies of hydrogen bonding in ammonia, J. Quant. Spectrosc. Radiat. Transfer 10, 1085 (1970).Google Scholar
  115. 107.
    A. D. H. Clague, G. Govil, and H. J. Bernstein, Medium effects in nuclear magnetic resonance. VII. Vapor phase studies of hydrogen bonding in methanol and methanoltrimethyl amine mixtures, Can. J. Chem. 47, 625 (1969).Google Scholar
  116. 108.
    A. Foldes and C. Sandorfy, Anharmonicity and hydrogen bonding. III. Examples of strong bonds. General discussion, J. Mol. Spectrosc. 20, 262 (1966).Google Scholar
  117. 109.
    J. Del Bene, Molecular orbital theory of the hydrogen bond. IV. The effect of hydrogen bonding on the n → π transition in dimers ROH···OCH2, J. Am. Chem. Soc. 95, 6517 (1973).Google Scholar
  118. 110.
    S. Iwata and K. Morokuma, Molecular orbital studies of hydrogen bonds. V. Analysis of the hydrogen-bond energy between lower excited states of H2CO and H2O, J. Am. Chem. Soc. 95, 7563 (1973).Google Scholar
  119. 111.
    J. Del Bene, On the blue shift of the nπ* band of acetone in water, J. Am. Chem. Soc. 96, 5643 (1974).Google Scholar
  120. 112.
    S. Iwata and K. Morokuma, Molecular orbital studies of hydrogen bonds. VI. Origin of red shift of ππ* transitions: trans-acrolein-water complex, J. Am. Chem. Soc. 97, 966 (1975).Google Scholar
  121. 113.
    K. Morokuma, S. Iwata, and W. Lathan, Molecular interactions in ground and excited states, in : The World of Quantum Chemistry (R. Daudel and B. Pullman, eds.), D. Reidel Publishing Co., Dordrecht-Holland (1974).Google Scholar
  122. 114.
    M. Jaszunski and A. J. Sadlej, Proton magnetic shielding in the water molecule, Theor. Chim. Acta 27, 135 (1972).Google Scholar
  123. 115.
    A. P. Zens, P. D. Ellis, and R. Ditchfield, The carbon-13 nuclear magnetic resonance chemical shifts of the fluoroallenes. A comparison between theory and experiment, J. Am. Chem. Soc. 96, 1309 (1974).Google Scholar
  124. 116.
    S. D. Christian and B. M. Keenan, Complexes of hydrogen chloride with ethers in carbon tetrachloride and heptane. Effects of induction of the basicity of ethers, J. Phys. Chem. 78, 432 (1974).Google Scholar
  125. 117.
    H. D. Mettee, Vapor-phase dissociation energy of (HCN)2, J. Phys. Chem. 77, 1762 (1973).Google Scholar
  126. 118.
    A. Johansson, P. A. Kollman, and S. Rothenberg, The electronic structure of the hydrogen cyanide dimer and trimer, Theor. Chim. Acta 26, 97 (1972).Google Scholar
  127. 119.
    J. R. Sabin, Hydrogen bonds involving sulfur. I. The hydrogen sulfide dimer, J. Am. Chem. Soc. 93, 3613 (1971).Google Scholar
  128. 120.
    J. E. Lowder, L. A. Kennedy, K. G. P. Sulzman, and S. S. Penner, Spectroscopic studies of hydrogen bonding in hydrogen sulfide, J. Quant. Spectrosc. Radiat. Transfer 10, 17 (1970).Google Scholar
  129. 121.
    G. Govil, A. D. H. Clague, and H. J. Bernstein, Medium effects in NMR. VI. Vapor phase studies of hydrogen bonding between dimethyl ether and hydrogen chloride, J. Chem. Phys. 49, 2821 (1968).Google Scholar
  130. 122.
    H. Poland and H. A. Scheraga, Energy parameters in polypeptides. I. Charge distributions and the hydrogen bond, Biochem. 6, 3791 (1967).Google Scholar
  131. 123.
    A. D. H. Clague and H. J. Bernstein, Heat of dimerization of some carboxylic acids in the vapor phase determined by a spectroscopic method, Spectrochim. Acta 25A, 593 (1969).Google Scholar
  132. 124.
    I. Dzidic and P. Kebarle, Hydration of alkali ions in the gas phase. Enthalpies and entropies of Reactions M+(H2O) n -1+H2O → M+(H2O) n, Chemistry 74, 1466 (1970).Google Scholar
  133. 125.
    M. Eisenstadt, P. Rothberg, and P. Kusch, Molecular composition of alkali fluoride vapors, J. Chem. Phys. 29, 797 (1958).Google Scholar
  134. 126.
    W. Hug and I. Tinoco, Electronic spectrum of nucleic acid bases. I. Interpretation of the in-plane spectra with the aid of all-valence electron MO-CI (configuration interaction) calculations, J. Am. Chem. Soc. 95, 2803 (1973).Google Scholar
  135. 127.
    L. C. Allen, A simple model of hydrogen bonding, J. Am. Chem. Soc. 97, 6921 (1976).Google Scholar
  136. 128.
    J. Donohue, Selected topics in hydrogen bonding, in: Structural Chemistry and Molecular Biology (A. Rich and N. Davidson, eds.), W. H. Freeman, San Francisco (1968).Google Scholar
  137. 129.
    J. Kroon, J. A. Kanters, J. G. C. M. van Duijneveldt-van de Rijdt, F. B. van Duijneveldt, and J. A. Vliegenthart, O-H···O hydrogen bonds in molecular crystals. A statistical and quantum chemical analysis, J. Mol. Struct. 24, 109 (1975).Google Scholar
  138. 130.
    J. Del Bene, Molecular orbital theory of the hydrogen bond. VII. Series of dimers having ammonia as the proton acceptor, J. Am. Chem. Soc. 95, 5460 (1973).Google Scholar
  139. 131.
    P. A. Kollman, A theory of hydrogen bond directionality, J. Am. Chem. Soc. 94, 1837 (1972).Google Scholar
  140. 132.
    F. van Duijneveldt, personal communication to P. A. Kollman.Google Scholar
  141. 133.
    A. Johansson, P. Kollman, and S. Rothberg, An ab initio molecular orbital study of intramolecular H-bonding: 1,3-propanediol, Chem. Phys. Lett. 18, 276 (1973).Google Scholar
  142. 134.
    W. Meyer, W. Jakubetz, and P. Schuster, Correlation effects on energy curves for proton motion. The cation [H5O2]+, Chem. Phys. Lett. 21, 97 (1973).Google Scholar
  143. 135.
    M. J. T. Bowers and R. M. Pitzer, Bond orbital analysis of the hydrogen bond in the linear water dimer, J. Chem. Phys. 59, 163 (1973).Google Scholar
  144. 136.
    W. H. Fink, Approach to partially predetermined electronic structure. The Li-He interaction potential, J. Chem. Phys. 57, 1822 (1972).Google Scholar
  145. 137.
    W. von Niessen, A Theory of molecules in molecules III. Application to the interaction between 2FH molecules, Theor. Chim Acta 31, 297 (1973).Google Scholar
  146. 138.
    W. von Niessen, A theory of molecules in molecules. IV. Application to the hydrogen bonding interaction in NH3H2O, Theor. Chim. Acta 32, 13 (1974).Google Scholar
  147. 139.
    R. Bonaccorsi, A. Pullman, E. Scrocco, and J. Tomasi, N vs. O proton affinities of the amide group: ab initio electrostatic molecular potentials, Chem. Phys. Lett. 12, 622 (1972).Google Scholar
  148. 140.
    S. Yamabe and K. Morokuma, J. Am. Chem. Soc. 97, 4458 (1975).Google Scholar
  149. 141.
    H. Ratajczak and W. Orville-Thomas, Charge transfer theory and vibrational properties of the hydrogen bond, J. Mol. Struct. 19, 237 (1972).Google Scholar
  150. 142.
    P. A. Kollman, J. F. Liebman, and L. C. Allen, The lithium bond, J. Am. Chem. Soc. 92, 1142 (1970).Google Scholar
  151. 143.
    A. Johansson, P. Kollman, and J. Liebman, Substituent effects on proton affinities, J. Am. Chem. Soc. 96, 3750 (1974).Google Scholar
  152. 144.
    P. Kollman, unpublished.Google Scholar
  153. 145.
    J. L. Beauchamp, Ion cyclotron resonance, Ann. Rev. Phys. Chem. 22, 527 (1971); M. S. Foster and J. L. Beachamp, unpublished.Google Scholar
  154. 146.
    W. Lathan and K. Morokuma, Molecular orbital studies of electron donor-acceptor complexes. I. Carbonyl cyanide-ROR and tetracyanoethylene-ROR complexes, J. Am. Chem. Soc. 97, 3615 (1975).Google Scholar
  155. 147.
    C. F. Bender, C. W. Bauschlicher, and H. F. Schaefer, Saddle point geometry and barrier height for H + F2 → HF+F, J. Chem. Phys. 60, 3707 (1974).Google Scholar
  156. 148.
    G. Anderson, Semi-empirical study of hydrogen bonding in the diaquohydrogen ion H5O2, J. Phys. Chem. 77, 2560 (1973).Google Scholar
  157. 149.
    H. Kistenmacher, H. Popkie, E. Clementi, and R. O. Watts, Study of the structure of molecular complexes. VII. Effect of correlation energy corrections to the Hartree-Fock water-water potential on Monte Carlo simulations of liquid water, J. Chem. Phys. 60, 4455 (1974).Google Scholar
  158. 150.
    F. Stillinger and A. Rahman, Improved simulation of liquid water by molecular dynamics, J. Chem. Phys. 60, 1545 (1974).Google Scholar
  159. 151.
    M. D. Newton, Ab initio Hartree-Fock calculations with inclusion of a polarized dielectric; formalism and application to the ground state hydrated electron, J. Chem. Phys. 58, 5833 (1973).Google Scholar
  160. 152.
    J. Hylton, R. E. Christoffersen, and G. G. Hall, A model for the ab initio calculation of some solvent effects, Chem. Phys. Lett. 24, 501 (1974).Google Scholar
  161. 153.
    J. Bacon and D. P. Santry, Molecular orbital theory for infinite systems: hydrogen bonded molecular crystals, J. Chem. Phys. 56, 2011 (1972).Google Scholar
  162. 154.
    J. Almlöf, Ave Kvick, and J. O. Thomas, Hydrogen bond studies. 77. Electron density and distribution in α glycine: X-N difference Fourier synthesis vs. ab initio calculations, J. Chem. Phys. 59, 3901 (1973).Google Scholar
  163. 155.
    R. R. Lucchese and H. F. Schaefer III, Charge transfer complexes. NH3-F2, NH3Cl2, NH3-CIF, N(CH3)3-F2, N(CH3)3-Cl2 and N(CH3)3-CIF, J. Am. Chem. Soc. (submitted).Google Scholar
  164. 156.
    S. Nagakura, Molecular complexes and their spectra: the molecular complex between iodine and triethylamine, J. Am. Chem. Soc. 80, 520 (1958).Google Scholar
  165. 157.
    M. Hanna, Bonding in donor acceptor complexes. I. Electrostatic contribution to the ground state properties of benzene-halogen complexes, J. Am. Chem. Soc. 90, 285 (1968).Google Scholar
  166. 158.
    R. Lefevre, D. V. Radford, and P. S. Stiles, The degree of charge transfer in the ground state of molecular π complexes, J. Chem. Soc. London, Ser. B, 1297 (1968).Google Scholar
  167. 159.
    M. S. Gordon, D. E. Tallman, C. Monroe, M. Steinback, and J. Ambrust, Localized orbital studies of hydrogen bonding. II. Dimers containing H2O, NH3, HF, H2CO and HCN, J. Am. Chem. Soc. 97, 1326 (1975).Google Scholar

Note Added in Proof

  1. 160.
    H. Umeyama and K. Morokuma, Molecular orbital studies of electron donor-acceptor complexes. IV. Energy decomposition analysis for halogen complexes: H3N-F2, H3N-Cl2, H3N-ClF, CH3H2N-ClF, H2CO-F2 and F2-F2, J. Am. Chem. Soc. 99, 330 (1977)Google Scholar
  2. 160.
    H. Umeyama and K. Morokuma The origin of hydrogen bonding, J. Am. Chem. Soc. 99, 1316 (1977).Google Scholar
  3. 161.
    K. Kitaura and K. Morokuma, Int. J. Quant. Chem. 10, 325 (1976).Google Scholar
  4. 162.
    P. Kollman and I. D. Kuntz, The hydration of NH4F, J. Am. Chem. Soc. 98, 6820 (1976).Google Scholar
  5. 163.
    J. O. Noell and K. Morokuma, A fractional charge model in the MO theory and its application to molecules in solutions and solids, J. Phys. Chem. 80, 2675 (1976).Google Scholar
  6. 164.
    J. McCreery, R. E. Christoffersen, and G. G. Hall, J. Am. Chem. Soc. 98, 7191,7198 (1976).Google Scholar
  7. 165.
    M. Newton, J. Phys. Chem. 79, 2795 (1975).Google Scholar
  8. 166.
    G. Dierksen, W. Kraemer, and B. Roos, Theor. Chim. Acta 36, 249 (1975).Google Scholar
  9. 167.
    O. Matsuoka, E. Clementi, and M. Yoshimine, J. Chem. Phys. 64, 1361 (1976).Google Scholar
  10. 168.
    J. Dill, L. C. Allen, W. C. Topp, and J. A. Pople, Am. Chem. Soc. 97, 7220 (1975).Google Scholar
  11. 169.
    R. Ditchfield, J. Chem. Phys. 65, 3123 (1976).Google Scholar
  12. 170.
    S. Dietrich, S. Rothenberg, E. C. Jorgensen, and P. Kollman, A theoretical study of intramolecular H-bonding in phenols and thiophenols, J. Am. Chem. Soc. 98, 8310 (1976).Google Scholar
  13. 171.
    M. Newton and G. Jeffrey, The stereochemistry of the α-hydroxy carboxylic acids and related systems, J. Am. Chem. Soc. (in press).Google Scholar
  14. 172.
    J. Del Bene and A. Vaccaro, A molecular orbital study of protonation. Substituted carbonyl compounds, J. Am. Chem. Soc. 98, 7526 (1976).Google Scholar
  15. 173.
    H. Umeyama and K. Morokuma, J. Am. Chem. Soc. 98, 4400 (1976).Google Scholar
  16. 174.
    P. Kollman and S. Rothenberg, A theoretical study of basicity: Proton affinities, Li+ affinities and H-bond affinities of simple molecules, J. Am. Chem. Soc. 99, 1333 (1977).Google Scholar
  17. 175.
    M. Trenary, H. F. Schaefer, and P. Kollman, A novel type of complex, J. Am. Chem. Soc. (in press).Google Scholar
  18. 176.
    P. Kollman, A general analysis of noncovalent interactions, J. Am. Chem. Soc. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Peter A. Kollman
    • 1
  1. 1.Department of Pharmaceutical Chemistry, School of PharmacyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations