Advertisement

A Priori Geometry Predictions

  • J. A. Pople
Part of the Modern Theoretical Chemistry book series (MTC, volume 4)

Abstract

Early quantum mechanical computations on the electronic structure of molecules were generally concerned with the determination of a wave function for a single assumed nuclear geometry (usually an experimentally determined equilibrium structure). As techniques have improved, however, it has increasingly become possible to make explorations of potential surfaces (total energies for heavy nuclei in the Born-Oppenheimer approximation) and hence to use theory directly to locate the minima in such surfaces and the corresponding equilibrium structural parameters. Such explorations can either be carried out partially, that is assuming some parameters and varying others (as in the study of “rigid” internal rotation with fixed bond lengths and angles) or, more desirably, by complete minimization of the energy with respect to all variables. Given the quantum mechanical procedure, the latter leads to a priori predictions of structure making no appeal to experimental data other than using the values of fundamental constants. Theoretical structures of this sort have been used for two main purposes. The first is to assess how well experimentally known structures are reproduced at a given level of theory and hence evaluate the limitations of the theory in a systematic manner. Second, the theory has been increasingly used to investigate structures of molecules for which experimental data are insufficient. Many such predictions have been made and there is an increasing number of examples of subsequent experimental verification.

Keywords

Bond Length Dihedral Angle Internal Rotation Minimal Basis Molecular Orbital Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Pople, Molecular orbital methods in organic chemistry, Acc. Chem. Res. 3, 217–223 (1970).CrossRefGoogle Scholar
  2. 2.
    J. C. Slater, Atomic shielding constants, Phys. Rev. 36, 57–64 (1930).CrossRefGoogle Scholar
  3. 3.
    C. C. J. Roothaan, New developments in molecular orbital theory, Rev. Mod. Phys. 23, 69–89 (1951).CrossRefGoogle Scholar
  4. 4.
    J. A. Pople and R. K. Nesbet, Self-consistent orbitals for radicals, J. Chem. Phys. 22, 571–574 (1959).Google Scholar
  5. 5.
    C. C. J. Roothaan, Self-consistent field theory for open shells of electronic systems, Rev. Mod. Phys. 32, 179–185 (1960).CrossRefGoogle Scholar
  6. 6.
    G. A. Segal, Alternative technique for the calculation of single determinant open-shell SCF functions which are eigenfunctions of S 2, J. Chem. Phys. 52, 3530–3533 (1970).CrossRefGoogle Scholar
  7. 7.
    W. J. Hunt, T. H. Dunning, and W. A. Goddard III, The orthogonality constrained basis set. Expansion method for treating of diagonal lagrange multipliers in calculations of electronic wave functions, Chem. Phys. Lett. 3, 606–610 (1969).CrossRefGoogle Scholar
  8. 8.
    J. S. Binkley, J. A. Pople, and P. A. Dobosh, The calculation of spin-restricted single determinant wavefunctions, Mol. Phys. 28, 1423–1429 (1974).CrossRefGoogle Scholar
  9. 9.
    D. A. Pierre, Optimization Theory with Applications, Wiley, New York (1969).Google Scholar
  10. 10.
    I. Shavitt and M. Karplus, Multicenter integrals in molecular quantum mechanics, J. Chem. Phys. 36, 550–551 (1962).CrossRefGoogle Scholar
  11. 11.
    J. M. Foster and S. F. Boys, A quantum variational calculation for HCHO, Rev. Mod. Phys. 32, 203–304 (1960).Google Scholar
  12. 12.
    C. M. Reeves and R. Fletcher, Use of Gaussian functions in the calculation of wavefunctions for small molecules. III. The orbital basis and its effect on valence, J. Chem. Phys. 42, 4073–4081 (1965).CrossRefGoogle Scholar
  13. 13.
    K. Oohata, H. Takota, and S. Huzinaga, Gaussian expansion of atomic orbitals, J. Phys. Soc. Japan 21, 2306–2313 (1966).CrossRefGoogle Scholar
  14. 14.
    W. J. Hehre, R. F. Stewart, and J. A. Pople, Self-consistent molecular orbital methods. I. Use of Gaussian expansions of Slater type orbitals, J. Chem. Phys. 51, 2657–2664 (1969).CrossRefGoogle Scholar
  15. 15.
    M. D. Newton, W. A. Lathan, W. J. Hehre, and J. A. Pople, Self-consistent molecular orbital theory, V. Ab initio calculations of equilibrium geometries and quadratic force constants, J. Chem. Phys. 52, 4064–4072 (1970).CrossRefGoogle Scholar
  16. 16.
    W. J. Hehre, R. Ditchfield, and J. A. Pople, Self-consistent molecular orbital methods. VIII. Molecular studies with least energy minimal atomic orbitals, J. Chem. Phys. 53, 932–935 (1970).CrossRefGoogle Scholar
  17. 17.
    R. M. Pitzer and D. P. Merrifield, Minimal basis wavefunctions for water, J. Chem. Phys. 52, 4782–4287 (1970).CrossRefGoogle Scholar
  18. 18.
    R. M. Stevens, Geometry optimization in the computation of barriers to internal rotation, J. Chem. Phys. 52, 1397–1402 (1970).CrossRefGoogle Scholar
  19. 19.
    W. J. Hehre, R. Ditchfield, R. F. Stewart, and J. A. Pople, Self-consistent molecular orbital methods. IV. Use of Gaussian expansion of Slater-type orbitals. Extension to second row molecules, J. Chem. Phys. 52, 2769–2773 (1970).CrossRefGoogle Scholar
  20. 20.
    L. C. Snyder and H. Basch, Molecular Wave Functions and Properties, Wiley, New York (1972).Google Scholar
  21. 21.
    R. Ditchfield, W. J. Hehre, and J. A. Pople, Self-consistent molecular orbital theory. IX. An extended Gaussian type basis for molecular orbital studies of organic molecules, J. Chem. Phys. 54, 724–728 (1971).CrossRefGoogle Scholar
  22. 22.
    A. Rauk, L. C. Allen, and E. Clementi, Electronic structure and inversion barrier of ammonia, J. Chem. Phys. 52, 4133–4144 (1970).CrossRefGoogle Scholar
  23. 23.
    P. C. Hariharan and J. A. Pople, Accuracy of AH nequilibrium geometries by single determinant molecular orbital theory, Mol. Phys. 27, 209–214 (1974).CrossRefGoogle Scholar
  24. 24.
    G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand, New York (1950).Google Scholar
  25. 25.
    G. Herzberg, Electronic Spectra of Polyatomic Molecules, Van Nostrand, New York (1965).Google Scholar
  26. 26.
    W. A. Lathan, W. J. Hehre, L. A. Curtiss, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. X. A systematic study of geometries and energies of AH nmolecules and cations, J. Am. Chem. Soc. 93, 6377–6387 (1971).CrossRefGoogle Scholar
  27. 27.
    P. E. Cade and W. M. Huo, Electronic structure of diatomic molecules. VI. A. Hartree-Fock wavefunctions and energy quantities for the ground states of the first-row hydrides, AH J. Chem. Phys. 47, 614–648 (1967).CrossRefGoogle Scholar
  28. 28.
    R. K. Nesbet, Approximate Hartree-Fock calculations for the hydrogen fluoride molecules, J. Chem. Phys. 36, 1518–1533 (1962).CrossRefGoogle Scholar
  29. 28.
    T. H. Dunning, R. M. Pitzer, and S. Aung, Near Hartree-Fock calculations on the ground state of the water molecule: energies, ionization potentials, geometry, force constants and one-electron properties, J. Chem. Phys. 57, 5044–5051 (1972).CrossRefGoogle Scholar
  30. 30.
    W. A. Lathan, W. J. Hehre, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. VI. Geometries and energies of small hydrocarbons, J. Am. Chem. Soc. 93, 808–815 (1971).CrossRefGoogle Scholar
  31. 31.
    W. A. Lathan, L. A. Curtiss, W. J. Hehre, J. B. Lisle, and J. A. Pople, Molecular orbital structure for small organic molecules and cations, Prog. Phys. Org. Chem. 11, 175–261 (1974).CrossRefGoogle Scholar
  32. 32.
    J. D. Dill, P. v. R. Schleyer, and J. A. Pople, Geometries and energies of small boron compounds, J. Am. Chem. Soc. 97, 3402–3409 (1975).CrossRefGoogle Scholar
  33. 33.
    A. Veillard, Relaxation during internal rotation ethane and hydrogen peroxide, Theor. Chim. Acta 18, 21–33 (1970).CrossRefGoogle Scholar
  34. 34.
    L. Radom, W. A. Lathan, W. J. Hehre, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. VIII. Geometries, energies and polarities of C3 hydrocarbons, J. Am. Chem. Soc. 93, 5339–5342 (1971).CrossRefGoogle Scholar
  35. 35.
    W. J. Hehre and J. A. Pople, Geometries, energies and polarities of C4 hydrocarbons, J. Am. Chem. Soc. 97, 6941–6955 (1975).CrossRefGoogle Scholar
  36. 36.
    A. Krantz, C. Y. Lin, and M. D. Newton, Cyclobutadiene. II. On the geometry of the matrix isolated species, J. Am. Chem. Soc. 95, 2744–2746 (1973).CrossRefGoogle Scholar
  37. 37.
    M. D. Newton, private communication.Google Scholar
  38. 38.
    L. Radom and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. IV. Internal rotation in hydrocarbons using a minimal Slater type basis, J. Am. Chem. Soc. 92, 4786–4795 (1970).CrossRefGoogle Scholar
  39. 39.
    W. J. Hehre and L. Salem, Conformation of vinylic methyl groups, Chem. Commun. 754–757 (1973).Google Scholar
  40. 40.
    L. Radom, W. A. Lathan, W. J. Hehre, and J. A. Pople, Molecular orbital theory of electronic structure of organic compounds. XVII. Internal rotation in 1,2-disubstituted ethanes, J. Am. Chem. Soc. 95, 693–698 (1974).CrossRefGoogle Scholar
  41. 41.
    L. Radom, W. J. Hehre, and J. A. Pople, Molecular orbital theory of electronic structure of organic compounds. VII. A systematic study of energies, conformations and bond interactions, J. Am. Chem. Soc., 93, 289–300 (1971).CrossRefGoogle Scholar
  42. 42.
    L. Radom, W. J. Hehre, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. XII. Fourier component analysis of internal rotation potential functions in saturated molecules, J. Am. Chem. Soc. 94, 2371–2381 (1972).CrossRefGoogle Scholar
  43. 43.
    R. Seeger, unpublished.Google Scholar
  44. 44.
    D. Vitus and A. A. Bothner-By, private communication.Google Scholar
  45. 45.
    W. A. Lathan, L. Radom, P. C. Hariharan, W. J. Hehre, and J. A. Pople, Structures and stabilities of three-membered rings from ab initio molecular orbital theory, Top. Current Chem. 40, 1–45 (1973).Google Scholar
  46. 46.
    J. S. Wright and L. Salem, Ring puckering and methylene rocking in cyclobutane, Chem. Commun. 1370–1371 (1969).Google Scholar
  47. 47.
    P. C. Hariharan, R. Ditchfield, and L. C. Snyder, private communication.Google Scholar
  48. 48.
    J. L. Nelson and A. A. Frost, A floating spherical Gaussian orbital model of molecular structure. X. C3 and C4 saturated hydrocarbons and cyclobutanes, J. Am. Chem. Soc. 94, 3727–3731 (1972).CrossRefGoogle Scholar
  49. 49.
    J. E. Kilpatrick, K. S. Pitzer, and R. Spitzer, The thermodynamics and molecular structure of cyclopentane, J. Am. Chem. Soc. 69, 2483–2488 (1947).CrossRefGoogle Scholar
  50. 50.
    D. Cremer and J. A. Pople, Pseudorotation in saturated five-membered ring compounds, J. Am. Chem. Soc. 97, 1358–1367 (1975).CrossRefGoogle Scholar
  51. 51.
    D. Cremer and J. A. Pople, unpublished.Google Scholar
  52. 52.
    W. Kutzelnigg, Molecular calculations involving electron correlation, in: Selected Topics in Molecular Physics (E. Clementi, ed.), p. 91, Verlag Chemie, Berlin (1972).Google Scholar
  53. 53.
    W. Meyer, Ionization energies of water from PNO-Cl calculations, Int. J. Quantum Chem. S5, 341–348 (1971).Google Scholar
  54. 54.
    C. Edmiston and M. Krauss, Pseudonatural orbitals as a basis for the superposition of configurations. I. H+ 2, J. Chem. Phys. 45, 1833–1839 (1966).CrossRefGoogle Scholar
  55. 55.
    W. Meyer, PNY-CI and CEPA studies of electron correlation effects. II. Potential curves and dipole moment functions of the OH radical, Theor. Chim. Acta 18, 21–33 (1970).CrossRefGoogle Scholar
  56. 56.
    R. Ahlrichs, H. Lischka, V. Staemmler, and W. Kutzelnigg, PNO-CI (pair natural orbital configuration interaction) and CEPA (coupled electron pair approximation with pair natural orbitals). Calculation of molecular systems. I. Outline of the method for closed-shell states, J. Chem. Phys. 62, 1225–1234 (1975).CrossRefGoogle Scholar
  57. 57.
    W. Kolos and L. Wolniewicz, Improved theoretical ground state energy of the hydrogen molecule, J. Chem. Phys. 49, 404–410 (1968).CrossRefGoogle Scholar
  58. 58.
    R. Ahlrichs, F. Driessler, H. Lischka, V. Staemmler, and W. Kutzelnigg, PNO-CI (pair natural orbital configuration interaction) and CEPA-PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. II. The molecules BeH2, BH, BH3, CH4, CH- 3, NH3 (planar and pyramidal), H2O, OH+ 3, HF and the Ne atom, J. Chem. Phys. 62, 1235–1247 (1975).CrossRefGoogle Scholar
  59. 59.
    M. E. Schwartz and L. J. Schaad, Ab initio studies of small molecules using 1s Gaussian basis functions. II. H+ 3, J. Chem. Phys. 47, 5325–5334 (1967).CrossRefGoogle Scholar
  60. 60.
    L. Salmon and R. D. Poshusta, Correlated Gaussian wavefunctions for H+ 3, J. Chem. Phys. 59, 3497–3503 (1973).CrossRefGoogle Scholar
  61. 61.
    H. Conroy, Molecular Schrödinger equation. X. Potential surfaces for ground and excited states of isosceles H3 ++ and H3 +, J. Chem. Phys. 51, 3979–3993 (1969).CrossRefGoogle Scholar
  62. 62.
    W. R. Harshbarger, Structure of the 2A 1 state of NH+ 3, J. Chem. Phys. 56, 177–181 (1972).CrossRefGoogle Scholar
  63. 63.
    H. Lew and L. Heiber, Spectrum of H2O+, J. Chem. Phys. 58, 1246–1247 (1973).CrossRefGoogle Scholar
  64. 64.
    H. Lischka and V. Dyczmons, The molecular structure of H3O+ by the ab initio SCF method and with inclusion of correlation energy, Chem. Phys. Lett. 23, 167–172 (1973).CrossRefGoogle Scholar
  65. 65.
    G. H. F. Diercksen, W. von Niessen, and W. P. Kraemer, SCF LCGO MO studies on the fluoronium ion FH2 + and its hydrogen bonding interaction with hydrogen fluoride FH, Theor. Chim. Acta 31, 205–214 (1973).CrossRefGoogle Scholar
  66. 66.
    P. C. Hariharan, W. A. Lathan, and J. A. Pople, Molecular orbital theory of simple carbonium ions, Chem. Phys. Lett. 14, 385–388 (1972).CrossRefGoogle Scholar
  67. 67.
    V. Dyczmons, V. Staemmler, and W. Kutzelnigg, Near Hartree-Fock energy and equilibrium geometry of CH+ 5, Chem. Phys. Lett. 5, 361–366 (1970).CrossRefGoogle Scholar
  68. 68.
    V. Dyczmons and W. Kutzelnigg, Ab initio calculation of small hydrides including electron correlation. XII. The ions CH+ 5 and CH- 5, Theor. Chim. Acta 33, 239–247 (1974).CrossRefGoogle Scholar
  69. 69.
    B. Zurawski, R. Ahlrichs, and W. Kutzelnigg, Have the ions C2H+ 3 and C2H+ 5 classical or non-classical structure, Chem. Phys. Lett. 21 309–313 (1973).CrossRefGoogle Scholar
  70. 70.
    J. A. Austin, D. H. Levy, C. A. Gottlieb, and H. E. Radford, Microwave spectrum of the HCO radical, J. Chem. Phys. 60, 207–215 (1974).CrossRefGoogle Scholar
  71. 71.
    J. S. Binkley, unpublished.Google Scholar
  72. 72.
    D. R. Yarkony, H. F. Schaefer III, and S. Rothenberg, Geometries of the methoxy radical (X2E and A2A1 states) and the methoxide ion, J. Am. Chem. Soc. 96 656–659 (1974).CrossRefGoogle Scholar
  73. 73.
    H. A. Jahn and E. Teller, Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy, Proc. Roy. Soc. London, Ser. A, 161, 220–235 (1937).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • J. A. Pople
    • 1
  1. 1.Department of ChemistryCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations