Advertisement

Stokes’ Settling and Chemical Reactivity of Suspended Particles in Natural Waters

  • Abraham Lerman
  • Devendra Lal
  • Michael F. Dacey
Part of the Marine Science book series (MR, volume 4)

Abstract

Equations are given for the Stokes settling velocities of the following particle shapes: the sphere, oblate spheroid, prolate spheroid, circular cylinder, elliptic cylinder, disc, and hemispherical cap. Dissolution of calcareous and silicate particles settling through ocean water, based on literature data, is analyzed in terms of a model for dissolution rate independent of the particle surface area, and a model for dissolution rate dependent on a surface reaction. The settling of dissolving particles in the presence of a countercurrent of upwelling water may lead to formation of thin nepheloid layers. Settling of calcite crystals through a stratified water column is treated as a case of variable nucleation (production) rates, dissolution and agglomeration of crystals en route to the bottom. A stochastic model presented in the paper gives a reasonably simple method for treating transient transport of particles in a physically heterogeneous water column.

Keywords

Water Column Drag Force Circular Cylinder Chemical Reactivity Suspended Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, T., Particle Size Measurement, Chapman and Hall, London, 1968.Google Scholar
  2. Berger, W. H., Foraminiferal ooze: solution at depths, Science, 156, 383–385, 1967.CrossRefGoogle Scholar
  3. Berqer, W. H., Radiolarian skeletons: solution at depths, Science, 159, 1237–1239, 1968.CrossRefGoogle Scholar
  4. Berner, R. A., Principles of Chemical Sedimentology, McGraw-Hill, New York, 1971.Google Scholar
  5. Biscaye, P. E., Mineraloay and sedimentation of Recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans, Bull. Geol. Soc. America, 76, 803–832, 1965.CrossRefGoogle Scholar
  6. Breach, D. R., Slow flow past ellipsoids of revolution, J. Fluid Mech., 10, 306–314, 1961.CrossRefGoogle Scholar
  7. Brenner, H,, The Stokes resistance of a slightly deformed sphere, Chem. Eng. Sci., 19, 519–539, 1964.CrossRefGoogle Scholar
  8. Brunskill, G. J., Fayettevtlle Green Lake, New York. II. Precipitation and sedimentation of calcite in a meromictic lake with laminated sediments, Limol. Oceanogr., 14, 830–847, 1969.CrossRefGoogle Scholar
  9. Brunskill, G. J., Supplementary Physical and Chemical Data for Fayetteville Green Lake, N. Y., Freshwater Institute, Fisheries Research Board of Canada, Winnipeg, Man., 55 p., mimeogr., 1970.Google Scholar
  10. Brunskill, G. J., and S. D. Ludlam, Fayetteville Green Lake, New York. I. Physical and chemical limnology, Limnol. Oceanogr., 14, 817–829, 1969.CrossRefGoogle Scholar
  11. Chester, R., Geological, geochemical and environmental implications of the marine dust veil, in The Changing Chemistry of the Oceans, Proc. 20th Nobel Symposium, edited by D. Dyrssen and D. Jagner, Wiley Interscience, New York, 291–305, 1972.Google Scholar
  12. Craig, H., Abyssal carbon and radiocarbon in the Pacific, J.Geophys. Res., 74, 5491–5506, 1969.CrossRefGoogle Scholar
  13. Culver, D. A., and G. J. Brunskill, Fayetteville Green Lake, New York, V. Studies of primary production and Zooplankton in a meromictic marl lake, Limnol. Oceanogr., 14, 862–873, 1969.CrossRefGoogle Scholar
  14. Dacey, M, F., Recurring random walk model for sediment transport, in preparation, 1973.Google Scholar
  15. Garrels, R. M., and R. M. Dryer, Mechanism of limestone replacement at low temperatures and pressures, Bull. Geol. Soc. America, 63, 325–379, 1952.CrossRefGoogle Scholar
  16. Gibbs, R. J., The geochemistry of the Amazon River system, Bull. Geol. Soc. America, 78, 1203–1232, 1967.CrossRefGoogle Scholar
  17. Gibbs, R. J., M. D. Matthews, and D. A. Link, The relationship between sphere size and settling velocity, J. Sed. Petrol., 41, 7–18, 1971.Google Scholar
  18. Goldberg, E. D., Minor elements in sea water, in Chemical Oceanography, vol. 1, edited by J. P. Riley and G. Skirrow, 163–196, Academic Press, New York, 1965.Google Scholar
  19. Hurd, D. C, Factors affecting solution rate of biogenic opal in sea water, Earth Planet. Sci. Lett., 15, 411–417, 1972.CrossRefGoogle Scholar
  20. Hutchinson, G. E., A Treatise on Limnology, vol. 2, Wiley, New York, 1967.Google Scholar
  21. Jacobs, M. B., and M. Ewing, Mineralogy of particulate matter suspended in sea water, Science, 149, 179–180, 1965.CrossRefGoogle Scholar
  22. Krey, J., Detritus in the ocean and adjacent sea, in Estuaries, Amer. Assoc. Adv. Sci. Pub. 83, edited by G. H. Lauff, pp. 389–394, Amer. Assoc. Adv. Sci., Washington, D. C., 1967.Google Scholar
  23. Kuo, C. Y., Free Falling Particle in Density Stratified Fluid, Completion Report A-032-PR, Water Resources Research Institute, University of Puerto Rico, Mayagtiez, P. R., 48 pp., mimeogr., 1972.Google Scholar
  24. Lal, D., and A. Lerman, Dissolution and behavior of particulate biogenic matter in the ocean: some theoretical considerations, J. Geophys. Res., 78, 7100–7111, 1973.CrossRefGoogle Scholar
  25. Lamb, H., Hydrodynamics, 6th edition, Dover, New York, 1932 (1945).Google Scholar
  26. Lerman, A., Time to chemical steady states in lakes and ocean, Adv. Chem. Ser., 106, 30–76, 1971.CrossRefGoogle Scholar
  27. Lerman, A., F. T. Mackenzie, and L. B. Plummer, Mineral dissolution and precipitation: S-shaped kinetics, Eos Trans. AGU, 54(4), 341, 1973.Google Scholar
  28. Levich, V. G., Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N. J., 1962.Google Scholar
  29. Manheim, F. T., R. H. Meade, and G. C. Bond, Suspended matter in surface waters of the Atlantic continental margin from Cape Cod to the Florida Keys, Science, 167, 371–376, 1970.CrossRefGoogle Scholar
  30. Morse, J. W., and R. A. Berner, Dissolution kinetics of calcium carbonate in sea water: II. A kinetic origin for the lysocline, Amer. J. Sci., 272, 840–851, 1972.CrossRefGoogle Scholar
  31. Munk, W. H., Abyssal recipes, Deep Sea Res., 13, 707–730, 1966.Google Scholar
  32. Munk, W. H., and G. A. Riley, Absorption of nutrients by aquatic plants, J. Mar. Res., 11, 215–240, 1952.Google Scholar
  33. Nielsen, A. E., Kinetics of Precipitation, Macmillan, New York, 1964.Google Scholar
  34. Pasquill, F., Atmospheric Diffusion, Van Nostrand, New York, 1962.Google Scholar
  35. Payne, L. E., and W. H. Pell, The Stokes flow problem for a class of axially symmetric bodies, J. Fluid Mech., 7, 529–549, 1960.CrossRefGoogle Scholar
  36. Peterson, M. N. A., Calcite: rates of dissolution in a vertical profile tn the Central Pacific, Science, 154, 1542–1544, 1966.CrossRefGoogle Scholar
  37. Plummer, L. N., Rates of Mineral-Aqueous Solution Reactions, Ph. D. thesis, Dept. Geological Sciences, Northwestern Univ., Evanston, 111., 1972.Google Scholar
  38. Redfield, A. C., B. H. Ketchum, and F. A. Richards, The influence of organisms on the composition of sea-water, in The Sea, vol. 2, edited by M. N. Hill, pp. 26–77, Wiley Interscience, New York, 1963.Google Scholar
  39. Riley, G. A., Particulate and organic matter in sea water, Adv.Mar. Biol., 8, 1–118, 1970.CrossRefGoogle Scholar
  40. Shutz, D. F., and K. K. Turekian, The investigation of geographical and vertical distribution of several trace elements in sea water using neutron activation analysis, Geochim. Cosmochim. Acta, 29, 259–313, 1965.CrossRefGoogle Scholar
  41. Smith, F. B., The turbulent spread of a falling cluster, Adv. Geophys., 6, 193–210, 1959.CrossRefGoogle Scholar
  42. Somayajulu, B. L. K., D. Lal, and S. Kusumgar, Man-made carbon-14 in deep Pacific waters: transport by biological skeletal material, Science, 166, 1397–1399, 1969.CrossRefGoogle Scholar
  43. Sorokin, Y. I., Microbial activity as a biogeochemical factor in the ocean, in The Changing Chemistry of the Oceans, Proc. 20th Nobel Symposium, edited by D. Dyrssen and D. Jagner, 189–204, Wiley Interscience, New York, 1972.Google Scholar
  44. Stommel, H., Trajectories of small bodies sinking slowly through convection cells, J. Mar. Res., 8, 24–29, 1949.Google Scholar
  45. Taylor, T.D., Low Reynolds number flows, in Basic Developments in Fluid Dynamics, vol. 2, edited by M. Holt, pp. 183–215, 1968.Google Scholar
  46. Turekian, K.K., A. Katz, and L. Chan, Trace element trapping in pteropod tests, Limnol. Oceanogr., 18, 240–249, 1973.CrossRefGoogle Scholar
  47. Weber, W.J., Physicochemical Processes for Water Quality Control, Wiley Interscience, New York, 1972.Google Scholar
  48. Williams, P. M., J. A. McGowan, and M. Stuiver, Bomb 14C in deep sea organisms, Nature, 227, 375–376, 1970.CrossRefGoogle Scholar
  49. Wollast, R., Kinetics of the alteration of K-feldspar in buffered solutions at low temperature, Geochim. Cosmochim. Acta, 31, 635–648, 1967.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Abraham Lerman
    • 1
    • 2
  • Devendra Lal
    • 1
    • 2
  • Michael F. Dacey
    • 1
    • 2
  1. 1.Physical Research Laboratory (India)Northwestern UniversityUSA
  2. 2.Scripps Institution of OceanographyNorthwestern UniversityUSA

Personalised recommendations